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Preface

Since the seminal papers by Lommel (1887), Chwolson (1889), and Schuster (1905),
the radiative transfer equation (RTE) has been widely used in diverse areas of science
and engineering to describe multiple scattering of light and other electromagnetic
radiation in media composed of randomly and sparsely distributed particles. Analyti-
cal studies of the RTE have formed a separate branch of mathematical physics. How-
ever, despite the importance and the widespread use of the radiative transfer theory
(RTT), its physical basis had not been established firmly until quite recently.

Indeed, the traditional “phenomenological” way to introduce the RTE has been to
invoke an eclectic combination of principles borrowed from classical radiometry (i.e.,
intuitively appealing arguments of energy balance and the simple heuristic concepts
of light rays and ray pencils), classical electromagnetics (electromagnetic scattering,
Stokes parameters, and phase and extinction matrices), and even quantum electrody-
namics (“photons”). Furthermore, the phenomenological approach has always relied
on an illusive concept of an “elementary (or differential) volume element” of the dis-
crete scattering medium. To sew together these motley concepts, one needs a set of
postulates that appear to be plausible at first sight but turn out to be artificial upon
close examination.

This inconsistent approach to radiative transfer is quite deceptive since it implies
that in order to derive the RTE for media composed of elastically scattering particles
one needs postulates other than those already contained in classical electromagnetics.
The phenomenological “derivation” becomes especially questionable when one at-
tempts to include the effects of polarization described by the so-called vector RTE
and/or to take into account the effects of particle nonsphericity and orientation. Fur-
thermore, it does not allow one to determine the range of applicability of the RTE and
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trace the fundamental link between the RTT and the effect of coherent backscattering.
During the past few decades, there has been significant progress in studies of the

statistical wave content of the RTT. This research has resulted in a much improved
understanding of the basic assumptions leading to the RTE and has indeed demon-
strated it to be a corollary of the Maxwell equations. Hence, the main goal of this
monograph is to consistently present the RTT as a branch of classical electromagnet-
ics as applied to discrete random media and to clarify the relationship between radia-
tive transfer and coherent backscattering.

Another motivation for writing this book was the recognition of the scarcity of
comprehensive monographs describing the fundamentals of polarized radiative trans-
fer and its applications in a way intelligible to graduate students and non-expert sci-
entists.1 This factor has significantly impeded the development and wide dissemina-
tion of physically-based remote sensing and particle characterization techniques.
Hence, the additional purpose of this volume is to present a broad and coherent out-
line of the subject and to make the technical material accessible to a larger audience
than those specializing in this research area. Consistent with this purpose, our pres-
entation assumes minimal prior knowledge of the subject matter and the relevant
theoretical approaches. We expect, therefore, that the book will be useful to science
professionals, engineers, and graduate students working in a broad range of disci-
plines: optics, electromagnetics, atmospheric radiation and remote sensing, radar me-
teorology, oceanography, climate research, astrophysics, optical engineering and
technology, particle characterization, and biomedical optics.

This volume is a natural continuation of our recent monograph on Scattering, Ab-
sorption, and Emission of Light by Small Particles (Mishchenko et al., 2002; herein-
after referred to as MTL2) in that it consistently uses the same general methodology
and notation system while applying them to multiple scattering by random particle
ensembles. However, the present book contains all the necessary background material
and is self-contained.

As in MTL, we usually denote vectors using the Times bold font and matrices
using the Arial bold font. Unit vectors are denoted by a caret, whereas dyads and dy-
adics are denoted by the symbol ↔. The Times italic font is reserved for scalar quan-
tities, important exceptions being the square root of minus one, the differential sign,
and the base of natural logarithms, which are denoted by Times roman characters i, d,
and e, respectively. Another exception is the relative refractive index, which is de-
noted by a sloping sans serif m. For the reader’s convenience, a glossary listing the
symbols used, their meaning and dimension, and the section where they first appear is
provided at the end of the book (Appendix I). Appendix H contains a list of abbrevia-
tions.

                                                
1 The recent book by Hovenier et al. (2004) is a notable exception.
2 By agreement with Cambridge University Press, MTL is now publicly available in the .pdf
format at http://www.giss.nasa.gov/~crmim/books.html.
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We did not try to compile a comprehensive and detailed reference list. Instead,
preference was given to seminal publications as well as to relevant books and reviews
where further references can be found.

We mention several relevant computer programs made publicly available on-line.
These programs have been thoroughly tested and are expected to generate reliable
results provided that they are implemented as instructed. It is not inconceivable, how-
ever, that some of these programs contain errors and/or are not platform-independent.
Also, it is possible that users could specify input parameter values that are outside the
intended range for which accurate results can be expected. For these reasons the
authors of this book and the publisher disclaim all liability for any damage that may
result from the use of the programs. Although the authors and the publisher have used
their best endeavors to ensure that the URLs for external Internet sites referred to in
this book are correct and active at the time of this book going to press, they cannot
guarantee that a site will remain live or that its content is or will remain appropriate.

Michael I. Mishchenko
Larry D. Travis

Andrew A. Lacis

New York
September 2005
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Chapter 1

Introduction

Natural and man-made environments provide countless examples of diverse scattering
media composed of particles. The varying complexity of these media suggests multi-
ple ways of using electromagnetic scattering for particle characterization and gives
rise to a distinctive hierarchy of theoretical models that can be used to simulate spe-
cific remote-sensing or laboratory measurements. Hence the objective of this intro-
ductory chapter is to present a simple classification of scattering problems involving
small particles and to briefly outline solution approaches described in detail in later
chapters.

1.1 Electromagnetic scattering by a fixed finite object

A parallel monochromatic beam of light propagates in a vacuum without a change in
its intensity or polarization state. However, inserting an object into the beam (see Fig.
1.1.1) causes several distinct effects. First, the object extracts some of the incident
energy and spreads it in all directions at the frequency of the incident beam. This phe-
nomenon is called elastic scattering and, in general, gives rise to light with a polari-
zation state different from that of the incident beam. Second, the object may convert
some of the energy contained in the beam into other forms of energy such as heat.
This phenomenon is called absorption. The energy contained in the incident beam is
accordingly reduced by the amount equal to the sum of the scattered and absorbed
energy. This reduction is called extinction. The extinction rates for different polariza-
tion components of the incident beam can be different, which is called dichroism.

In electromagnetic terms, the parallel monochromatic beam of light is represented
by a harmonically oscillating plane electromagnetic wave. The latter propagates in a
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vacuum without a change in its intensity or polarization state (see Fig. 1.1.2(a)).
However, the presence of a finite object, as illustrated in Fig. 1.1.2(b), changes both
the electric, E, and the magnetic, H, field that would otherwise exist in an unbounded
homogeneous space. The difference between the total fields in the presence of the
object, ) ,( trE  and ), ,( trH  and the original fields that would exist in the absence of
the object, ) ,(inc trE  and ),,(inc trH  can be thought of as the fields scattered by the
object, ) ,(sca trE  and ),,(sca trH  where r is the position (radius) vector and t is time
(Fig. 1.1.2(b)). In other words, the total electric and magnetic fields in the presence of
the object are equal to vector sums of the respective incident (original) and scattered
fields:

), ,(  ) ,(    ) ,( scainc ttt rrr EEE += (1.1.1)

). ,(  ) ,(    ) ,( scainc ttt rrr HHH += (1.1.2)

The origin of the scattered electromagnetic field can be understood by recalling
that in terms of microscopic electrodynamics, the object is an aggregation of a large
number of discrete elementary electric charges. The oscillating electromagnetic field
of the incident wave excites these charges to vibrate with the same frequency and
thereby radiate secondary electromagnetic waves. The superposition of all the secon-
dary waves gives the total elastically scattered field. If the charges do not oscillate
exactly in phase or exactly in anti-phase with the incident field then there is dissipa-
tion of electromagnetic energy into the object. This means that the object is absorbing
and scatters less total energy than it extracts from the incident wave.

Electromagnetic scattering is an exceedingly complex phenomenon because a
secondary wave generated by a vibrating charge also stimulates vibrations of all other
charges forming the object and thus modifies their respective secondary waves. As a

In
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Figure 1.1.1.  Scattering by a fixed finite object. In this case the object consists of three
disjoint, heterogeneous, stationary bodies.
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result, all the secondary waves become interdependent. Furthermore, the computation
of the total scattered field by superposing the secondary waves must take account of
their phase differences, which change every time the incidence and/or the scattering
direction is changed. Therefore, the total scattered field depends on the way the
charges are arranged to form the object with respect to the incidence and scattering
directions.

Since the number of elementary charges forming an object can be extremely large,
solving the scattering problem directly by computing and superposing all secondary
waves is impracticable even with the aid of modern computers. Fortunately, the scatter-
ing problem can also be solved using the concepts of macroscopic electromagnetics,
which treat the large collection of charges as one or several macroscopic bodies with a
specific distribution of the refractive index. Consequently, the scattered field can be
computed by solving the Maxwell equations for the macroscopic electromagnetic field
subject to appropriate boundary conditions. It is this approach that forms the basis of the
modern theory of electromagnetic scattering by macroscopic objects.

To simplify the solution of the scattering problem, we will adhere throughout the
book to the following five well-defined restrictions:

1. We will always assume that the unbounded host medium surrounding the
scattering object is homogeneous, linear, isotropic, and nonabsorbing.

2. We will always assume that the scattering object is illuminated by either:

(i) a time-harmonic plane electromagnetic wave given, in the complex-field

(a)

),(),(),( incsca ttt rrr −=
t)tt ,(),(),( incsca rrr −=

E
H
EE

H H

(b)

),(inc tr

t),(inc r

E
H

),(inc tr

t),(inc r

E
H

Far-field zone

Figure 1.1.2.  Schematic representation of the electromagnetic scattering problem.
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representation, by

�
�
�

−⋅=
−⋅=

),iiexp(    ),(
 ),iiexp(    ),(

0

0

tt
tt

ω
ω

rkHrH
rkErE

      ,3ℜ∈r (1.1.3)

with constant amplitudes 0E  and ,0H  where ω  is the angular frequency, k
is the real-valued wave vector, ,)1(i 21−=  and 3ℜ  denotes the entire three-
dimensional space, or

(ii) a quasi-monochromatic parallel beam of light given by

�
�
�

−⋅=
−⋅=

),iiexp()(    ),(
),iiexp()(    ),(

0

0

ttt
ttt

ω
ω

rkHrH
rkErE

      ,3ℜ∈r (1.1.4)

where fluctuations in time of the complex amplitudes of the electric and mag-
netic fields, )(0 tE  and ),(0 tH  around their respective mean values occur
much more slowly than the harmonic oscillations of the time factor

).iexp( tω−

This restriction excludes other types of illumination such as a focused laser
beam of finite lateral extent or a pulsed beam.

3. We will exclude nonlinear optics effects by assuming that the conductivity,
permeability, and electric susceptibility of both the scattering object and the
surrounding medium are independent of the electric and magnetic fields.

4. We will assume that electromagnetic scattering occurs without frequency re-
distribution, i.e., the scattered light has the same frequency as the incident
light. This restriction excludes inelastic scattering phenomena such as Raman
and Brillouin scattering and fluorescence. It also excludes the specific consid-
eration of the small Doppler shift of frequency of the scattered light relative
to that of the incident light due the movement of the scatterer with respect to
the source of illumination.

5. We will largely exclude from consideration the phenomenon of thermal emis-
sion. The latter is caused by electron transitions from one energy level to a
lower level in macroscopic bodies with absolute temperature different from
zero. A macroscopic object is a complex system of molecules with a large
number of degrees of freedom. Therefore, many different electron transitions
produce spectral emission lines so closely spaced that the resulting radiation
spectrum becomes effectively continuous and includes emitted energy at all
frequencies. By neglecting thermal emission, we will implicitly assume that
the temperature of the object is low enough that the intensity of the emitted
radiation at the frequency of the incident light is much smaller that the elasti-
cally scattered intensity. This assumption is usually valid for objects at room
or lower temperature and for short-wave infrared and shorter wavelengths.
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The theoretical and numerical techniques for computing the electromagnetic field
elastically scattered by a finite fixed object composed of one or several physical bod-
ies are many and are reviewed thoroughly in Mishchenko et al. (2000a), MTL, and
Kahnert (2003). Since all of these techniques have certain limitations in terms of the
object morphology and object size relative to the incident wavelength, a practitioner
should analyze carefully the relative strengths and weaknesses of the available solu-
tion techniques before attempting to address the specific problem in hand.

1.2 Actual observables

Because of high frequency of time-harmonic oscillations, traditional optical instru-
ments cannot measure the electric and magnetic fields associated with the incident
and scattered waves. Indeed, accumulating and averaging a signal proportional to the
electric or the magnetic field over a time interval long compared with the period of
oscillations would yield a zero net result:

0.    )iexp(d1
2

  

  ωπ
ω

�T

Tt

t
tt

T
=′−′

+

(1.2.1)

Therefore, the majority of optical instruments measure quantities which have the di-
mension of energy flux and are defined in such a way that the time-harmonic factor

)iexp( tω−  vanishes upon multiplication by its complex-conjugate counterpart:
.1)]i)[exp(iexp( ≡−− ∗tt ωω  This means that in order to make the theory applicable to

analyses of actual optical observations, the scattering process must be characterized in
terms of carefully chosen derivative quantities that can be measured directly. This
explains why the concept of an actual observable is central to the discipline of light
scattering by particles.

Although one can always define the magnitude and the direction of the electro-
magnetic energy flux at any point in space in terms of the Poynting vector, the latter
carries no information about the polarization state of the incident and scattered fields.
The conventional approach to ameliorate this problem dates back to Sir George
Gabriel Stokes. He proposed using four real-valued quantities which have the dimen-
sion of monochromatic energy flux and fully characterize a transverse electromag-
netic wave1 inasmuch as it is subject to practical optical analysis (Stokes, 1852).
These quantities, called the Stokes parameters, form the so-called four-component
Stokes column vector and carry information about both the intensity and the polariza-
tion state of the wave.

In the so-called far-field zone of a fixed object, the propagation of the scattered
electromagnetic wave is away from the object (Fig. 1.1.2(b)). Furthermore, the elec-

                                                
1 By definition, the electric and magnetic field vectors of a transverse electromagnetic wave
vibrate in the plane perpendicular to the propagation direction.
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tric and magnetic field vectors vibrate in the plane perpendicular to the propagation
direction and their amplitudes decay inversely with distance from the object. The
tranversality of both the incident plane wave and the scattered spherical wave allows
one to define the corresponding sets of Stokes parameters and to describe the re-
sponse of a well-collimated polarization-sensitive detector of light in terms of the

44×  so-called phase and extinction matrices. Specifically, detector 2 in Fig. 1.1.1
collects only the scattered light, and its response is fully characterized by the product
of the phase matrix and the Stokes column vector of the incident wave. Thus the
phase matrix realizes the transformation of the Stokes parameters of the incident wave
into the Stokes parameters of the scattered wave. The response of detector 1 consists
of three parts:

1. The one due to the incident light.
2. The one due to the forward-scattered light.
3. The one due to the interference of the incident wave and the wave scattered

by the object in the exact forward direction.

The third part is described by minus the product of the extinction matrix and the
Stokes column vector of the incident wave and accounts for both the total attenuation
of the detector signal due to extinction of light by the object and the effect of dichro-
ism.

The phase and extinction matrices depend on object characteristics such as size,
shape, refractive index, and orientation and can be readily computed provided that the
scattered field is known from the solution of the Maxwell equations.

The main convenience of the far-field approximation is that it allows one to treat
the object essentially as a point source of scattered radiation. However, the criteria
defining the far-field zone are rather stringent and are often violated in practice. A
good example is remote sensing of water clouds in the terrestrial atmosphere using
detectors of electromagnetic radiation mounted on aircraft or satellite platforms. Such
detectors typically measure radiation coming from a small part of a cloud and do not
“perceive” the entire cloud as a single point-like scatterer. Furthermore, the notion of
the far-field zone of the cloud becomes completely meaningless if a detector is placed
inside the cloud. It is thus clear that to characterize the response of such “near-field”
detectors one must define quantities other than the Stokes parameters and the extinc-
tion and phase matrices. Still the actual observables must be defined in such a way
that they can be measured by an optical device ultimately recording the flux of elec-
tromagnetic energy.

1.3 Foldy–Lax equations

Many theoretical techniques based on directly solving the differential Maxwell equa-
tions or their integral counterparts are applicable to an arbitrary fixed finite object, be
it a single physical body or a cluster consisting of several distinct components, either
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touching or spatially separated. These techniques are based on treating the object as a
single scatterer and yield the total scattered electric and magnetic fields. However, if
the object is a multi-particle cluster then it is often convenient to represent the total
scattered field as a vector superposition of partial fields scattered by the individual
cluster components. This means, for example, that the total electric field at a point r is
written as follows:

),,(),(),( sca

1

inc ttt i

N

i

rErErE
=

+=       ,3ℜ∈r (1.3.1)

where N is the number of particles in the cluster and ),(sca ti rE  is the ith partial scat-
tered electric field. The total magnetic field is given by a similar expression. The par-
tial scattered fields can be found by solving vector so-called Foldy–Lax equations
which follow directly from the volume integral equation counterpart of the Maxwell
equations and are exact. By iterating the Foldy–Lax equations, one can derive an or-
der-of-scattering expansion of the scattered field which, in combination with statisti-
cal averaging, forms the basis of the modern theory of multiple scattering by random
particle ensembles.

1.4 Dynamic and static scattering by random groups of
particles

Solving the Maxwell equations yields the field scattered by a fixed object. This ap-
proach can be used directly in analyses of microwave analog measurements (e.g.,
Gustafson, 2000; Section 8.2 of MTL), in which the scattering object is held fixed
relative to the source of electromagnetic radiation during the measurement cycle.
However, it is inapplicable in the majority of laboratory and remote-sensing observa-
tions. Even if the scattering object is a single microparticle trapped inside an electro-
static or optical levitator (e.g., Chapter 2 of Davis and Schweiger, 2002), it rapidly
changes its position and orientation during the time necessary to take a measurement.
Furthermore, one often encounters situations in which light is scattered by a very
large group of particles forming a constantly varying spatial configuration. A typical
example is a cloud of water droplets or ice crystals in which the particles are con-
stantly moving, spinning, and even changing their shapes and sizes due to oscillations
of the droplet surface, evaporation, condensation, sublimation, and melting. Although
such a particle collection can be treated at each given moment as a fixed cluster, a
typical measurement of light scattering takes a finite amount of time over which the
spatial configuration of the component particles and their sizes, orientations, and/or
shapes continuously and randomly change. Therefore, the registered signal is in effect
an average over a large number of distinct clusters.

When a fixed group of particles is illuminated by a monochromatic, spatially co-
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herent plane wave (e.g., laser light), the light scattered by the group onto a distant
screen generates a characteristic speckle pattern consisting of randomly located bright
spots of various sizes and shapes (see Fig. 1.4.1(a)). This pattern is the result of con-
structive or destructive interference of the partial waves scattered by different parti-
cles towards a point on the screen. When the particles move, the phase relations be-
tween the partial waves constantly change, thereby causing rapid fluctuations of the
speckle pattern. Accumulating the signal over a sufficiently long period of time aver-
ages the speckle pattern out and results in a rather smooth “incoherent” distribution of
the scattered intensity (Fig. 1.4.1(b)).

It has been shown that measurements of the temporal and/or spatial fluctuations of
the speckle pattern contain useful information about the particles, in particular about
their motion. Statistical analyses of light scattered by dilute and dense particle sus-
pensions, respectively, are the subject of the disciplines called photon correlation
spectroscopy (PCS) and diffusing wave spectroscopy (DWS) and form the basis of
many well-established experimental techniques for the measurement of various parti-
cle characteristics such as velocity, size, and dispersity (e.g., Berne and Pecora, 1976;

Laser beam

Screen

(a)

(b)

Laser beam

Screen

Fixed
particulate
sample

Moving
particulate
sample

Figure 1.4.1.  (a) Speckle pattern produced by laser light reflected by a fixed particulate
sample.  (b) Moving the scattering sample during the measurement averages the speckle pattern
out. (After Lenke and Maret, 2000a.)
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Pine et al., 1990). The recent extension of PCS to account for particles changing the
polarization state of the incident coherent beam, so-called polarization fluctuation
spectroscopy, enables the shapes in addition to the sizes of particles to be sensed
(Hopcraft et al., 2004).

Photon correlation spectroscopy and diffusing wave spectroscopy study dynamic
aspects of light scattering by groups of randomly moving particles and as such will
not be discussed in this volume. Instead, we will assume that the effect of temporal
fluctuations is eliminated by averaging the speckle pattern over a period of time much
longer than the typical period of the fluctuations. In other words, we will deal with the
average, static component of the scattering pattern. Therefore, the subject of this book
can be called static light scattering.

1.5 Ergodicity

Quantitative analyses of static scattering measurements require the use of a theoretical
averaging procedure. Let us consider, for example, the measurement of a scattering
characteristic A of a cloud of spherical water droplets. This characteristic depends on
time implicitly by being a function of time-dependent physical parameters of the
cloud such as the coordinates and sizes of all the constituent particles. The full set of
particle positions and sizes will be denoted collectively by ψ  and determines the
state of the entire cloud at a moment in time. In order to interpret the measurement of

)]([ tA ψ  accumulated over a period of time extending from 0tt =  to ,0 Ttt +=  one
needs a way of predicting theoretically the average value
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Quite often the temporal evolution of a complex scattering object such as the
cloud of water droplets is controlled by several physical processes and is described by
an intricate system of equations. To incorporate the solution of this system of equa-
tions for each moment of time into the theoretical averaging procedure (1.5.1) can be
a formidable task and is rarely, if ever, done. Instead, averaging over time is replaced
by ensemble averaging based on the following rationale.

Although the coordinates and sizes of water droplets in the cloud change with
time in a specific way, the range of instantaneous states of the cloud captured by the
detector during the measurement becomes representative of that captured over an in-
finite period of time provided that T is sufficiently large. We thus have

A  ≈ .)]([d1lim
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τ
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      (1.5.2)

Notice now that the infinite integral in Eq. (1.5.2) can be expected to “sample” every
physically realizable state ψ  of the cloud. Furthermore, this sampling is statistically
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representative in that the number of times each state is sampled is large and tends to
infinity in the limit →τ ∞. Most importantly, the cumulative contribution of a cloud
state ψ  to tA��  is independent of the specific moments of time when this state actu-
ally occurred in the process of the temporal evolution of the cloud. Rather, it depends
on how many times this state was sampled. Therefore, this cumulative contribution
can be thought of as being proportional to the probability of occurrence of the state
ψ  at any moment of time. This means that instead of specifying the state of the cloud
at each moment t and integrating over all t, one can introduce an appropriate time-
independent probability density function )(ψp  and integrate over the entire physi-
cally realizable range of cloud states:

 tA��  ≈ ,)()(d ψψψψ ��= AAp       (1.5.3)

where

.1)(d =ψψ p (1.5.4)

The assumption that averaging over time for a “sufficiently random” object can be
replaced by ensemble averaging is called the ergodic hypothesis. Although it has not
been possible to establish mathematically the full ergodicity of real dynamical sys-
tems, more restricted versions of the ergodic theorem have been proven. Physical
processes such as Brownian motion and turbulence often help to establish a signifi-
cant degree of randomness of particle positions and orientations, which seems to ex-
plain why many theoretical predictions based on the ergodic hypothesis have agreed
very well with experimental data (e.g., Berne and Pecora, 1976). Therefore, we will
assume throughout this book that the scattering system in question is ergodic and,
thus, Eq. (1.5.3) is applicable.

1.6 Single scattering by random particles

The simplest stochastic scattering object is a single particle undergoing random
changes of position, orientation, size, and/or shape during the measurement. A good
example is a solid or liquid particle trapped inside an electrostatic or optical levitator.
In this case particle positions are confined to a small volume with diameter often
much smaller than the distance from the volume center to the detector (Fig. 1.6.1). It
is then rather straightforward to show that the detector signal accumulated over a pe-
riod of time is independent of particle positions and can be described in terms of
phase and extinction matrices averaged over appropriate ranges of particle orienta-
tions, sizes, and shapes. The formalism remains largely the same as in the case of far-
field scattering by a fixed object.

A more difficult case is the scattering by a small random group of particles (Fig.
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1.6.2). Still most of the far-field-scattering formalism can be preserved if the group is
observed from a large distance and is sufficiently tenuous. Specifically, if the number
of particles is sufficiently small and the separation between them is sufficiently large
then one can neglect the response of each particle to the fields scattered by all other
particles and assume that each particle is excited only by the external field. This is the
essence of the so-called single-scattering approximation, which leads to a significant
simplification of the Foldy–Lax equations. Another assumption is that particle posi-
tions are uncorrelated and sufficiently random and are independent of particle states
(i.e., combinations of particle sizes, refractive indices, shapes, and orientations). One
can then show that the signal accumulated by a distant detector over a period of time
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Figure 1.6.1.  Scattering by a single random particle.
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Figure 1.6.2.  Scattering by a small random particle group.
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can be directly described in terms of single-particle phase and extinction matrices
averaged over the states (but not the positions!) of all the particles and multiplied by
the number of particles.

1.7 Multiple scattering by a large random group of
particles 

The problem of utmost complexity is electromagnetic scattering by a very large ran-
dom group of particles occupying a large volume of space (Fig. 1.7.1). The far-field-
scattering formalism becomes totally inapplicable since the angular aperture of an
external detector may subtend only a small fraction of the scattering volume (detector
1) or, worse, the detector may be placed inside the scattering medium (detector 2).
Furthermore, the field created by a particle in response to the fields scattered by all
the other particles forming the medium can be comparable to or even greater than that
created in response to the incident field, which means that the single-scattering ap-
proximation is no longer valid.

To deal with this problem, one has to make several crucial assumptions. The first
is to assume that each particle is located in the far-field zones of all the other particles

Detector 2

Detector 1

Incident plane w
ave

Figure 1.7.1.  Scattering by a large random particle group.
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and that the observation point is also located in the far-field zones of all the particles
forming the scattering medium. This assumption leads to a dramatic simplification of
the Foldy–Lax equations wherein the latter are converted from a system of volume
integral equations into a system of linear algebraic equations. However, it limits the
applicability of the final result by requiring that the particles in the scattering medium
are not closely spaced, a condition that is nonetheless met in many natural circum-
stances.

The algebraic system of the far-field Foldy–Lax equations can be cast into an or-
der-of-scattering form, in which the total electric field at a point in space is repre-
sented as a sum of contributions arising from light-scattering paths going through all
possible particle sequences. The second major assumption, called the Twersky ap-
proximation, is that all paths going through the same particle more than once can be
neglected. It can be demonstrated that doing this is justified provided that the total
number of particles in the scattering volume is very large.

The third major assumption is that of full ergodicity, which allows one to replace
averaging over time by averaging over particle positions and states.

The fourth major assumption is that (i) the position and state of each particle are
statistically independent of each other and of those of all the other particles and (ii)
the spatial distribution of the particles throughout the medium is random and statisti-
cally uniform. As one might expect, this assumption leads to a major simplification of
all analytical derivations.

The next major step is the characterization of the multiply scattered radiation by
the coherency dyadic

tttC �⊗�= ∗ ),(),()( rErEr
�

  (1.7.1)

followed by the angular decomposition

  )ˆ,(ˆd)(
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in terms of the so-called specific coherency dyadic ),ˆ,( qrΣ
�

 where ⊗  denotes the
dyadic product of two vectors and the integration is performed over all propagation
directions as specified by the unit vector .q̂  The introduction of these quantities of-
fers three decisive benefits. First, one can sum the so-called ladder diagrams appear-
ing in the diagrammatic representation of the coherency dyadic and show that the
ladder component of the specific coherency dyadic satisfies a radiative transfer equa-
tion. Second, the ladder component of the specific coherency dyadic can be used to
define the so-called specific intensity column vector which also satisfies an RTE.
Third, one can use the integral form of the RTE to show that the specific intensity
column vector directly describes the radiometric and polarimetric response of detec-
tors 1 and 2 in Fig. 1.7.1 averaged over a period of time.

The fact that the specific intensity column vector can be both computed theoreti-
cally by solving the RTE and measured with a suitable optical device explains the



Chapter 114

practical usefulness of the radiative transfer theory in countless applications in
various branches of science and engineering. Furthermore, the microphysical deriva-
tion of the RTE outlined above and described in detail in Chapter 8 gives the RTT the
firm footing that it had needed for many decades in order to refute the criticism on the
part of physicists (Apresyan and Kravtsov, 1996).

1.8 Coherent backscattering

Despite the restrictions of the RTT, it provides a powerful and reasonably general
prescription for the treatment of the interaction of light with particulate media and is
accordingly applicable to a broad range of practical situations. However, owing to
some of the basic assumptions in the derivation of the RTE, there are circumstances
for which it is not sufficient. An important example is the so-called coherent back-
scattering (CB) effect (otherwise known as weak localization of electromagnetic
waves).

To trace the physical origin of this effect, let us consider a layer composed of ran-
domly positioned particles and illuminated by a plane electromagnetic wave incident
in the direction illn̂  (Fig. 1.8.1). The (infinitely) distant observer measures the inten-
sity of light reflected by the layer in the direction .ˆ obsn  The reflected signal is com-
posed of the contributions made by waves scattered along various paths inside the
layer involving different combinations of particles. Let us consider the two conjugate
scattering paths shown in Fig. 1.8.1 by solid and broken lines. These paths go through
the same group of N particles, denoted by their positions ,1r ,2r …, ,Nr  but in oppo-
site directions. The waves scattered along the two conjugate paths interfere, the inter-
ference being constructive or destructive depending on the phase difference

),ˆˆ()( obsill11 nnrr +⋅−= Nk∆  (1.8.1)

where 1k  is the wave number in the surrounding medium. If the observation direction

Nr

1−Nr
2r

1r

illn̂illn̂obsn̂ obsn̂

…

Figure 1.8.1.  Schematic explanation of coherent backscattering.
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is far from the exact backscattering direction given by ,ˆ illn−  then the waves scattered
along conjugate paths involving different groups of particles interfere in different
ways, and the average effect of the interference is zero owing to the randomness of
particle positions. Consequently, the observer measures some average, incoherent
intensity that is well described by the RTE. However, at exactly the backscattering
direction ),ˆˆ( illobs nn −=  the phase difference between conjugate paths involving any
group of particles is identically equal to zero, Eq. (1.8.1), and the interference is al-
ways constructive, thereby resulting in a coherent intensity peak superposed on the
incoherent background (Fig. 1.8.2).

The failure of the RTE to reproduce the CB peak is explained by the fact that of
all kinds of diagrams in the diagrammatic representation of the coherency dyadic it
keeps only the ladder diagrams, whereas CB is caused by so-called cyclical (or
maximally crossed) diagrams. The inclusion of the cyclical diagrams makes the com-
putation of the coherency dyadic much more involved and limits the range of prob-
lems that can be solved accurately. However, the reciprocal nature of each single-
scattering event leads to an interesting exact result: the characteristics of the CB effect
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Figure 1.8.2.  Angular profile of the coherent backscattering peak produced by a 1500 µm-
thick slab of 9.6 vol% of 0.215 µm-diameter polystyrene spheres suspended in water. The slab
was illuminated by a linearly polarized laser beam propagating normally to the slab surface.
The incident wavelength was 633 nm. The scattering plane (i.e., the plane through the vectors

obsn̂  and )ˆ illn  was fixed in such a way that the electric field vector of the incident beam
vibrated in this plane. The detector measured the component of the backscattered intensity
polarized parallel to the scattering plane. The curve shows the profile of the backscattered
intensity normalized by the intensity of the incoherent background as a function of the phase
angle. The latter is defined as the angle between the vectors obsn̂  and .ˆ illn−  (After van Albada
et al., 1987.)
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at the exact backscattering direction can be rigorously expressed in terms of the solu-
tion of the RTE. This result will be discussed in detail in Chapter 14.

The ladder and cyclical diagrams are the dominant but not the only types of dia-
grams in the diagrammatic representation of the coherency dyadic. However, to in-
clude all the other diagrams in the calculation of multiply scattered radiation is a for-
midable task that goes beyond the scope of this book.

1.9 Classification of electromagnetic scattering problems

To develop a comprehensive and universal classification of electromagnetic scattering
problems borders on being impossible. This chapter provides only an outline tailored
to the specifics of radiative transfer and coherent backscattering, whereas those
working on another aspect of electromagnetic scattering might prefer a modified clas-
sification with somewhat different emphases. We hope, however, that our outline,
summarized graphically in Fig. 1.9.1, fulfills its limited objective and explains ade-
quately the place of the RTT and CB within the broader context of classical macro-
scopic electromagnetics.

As is obvious from the diagram in Fig. 1.9.1, there are two broad classes of prob-
lems that we have not touched upon so far and which, in fact, will not be discussed
specifically in this book. We have emphasized several times that the main theme of
this book is multiple scattering by randomly positioned discrete particles with refrac-
tive index distinctly different from that of the surrounding medium. However, one can
also consider multiple scattering in continuous media with random fluctuations of the
refractive index. This class of problems requires special solution approaches that are
beyond the scope of this book. The reader can find relevant information in the mono-
graphs by Fabelinskii (1968), Crosignani et al. (1975), Kuz’min et al. (1994), Apre-
syan and Kravtsov (1996), and Tsang and Kong (2001) as well as in the recent re-
views by van Tiggelen and Stark (2000) and Klyatskin (2004).

Another important problem is electromagnetic scattering by an infinite random
rough surface separating two half-spaces with different refractive indices. Although
some rough surfaces, such as the ocean surface, indeed change randomly in time,
many rough interfaces do not change and are deterministic rather than random. How-
ever, quite often their position relative to the source of light and/or the detector is not
fixed during the measurement and their vertical profile is described by a highly ir-
regular function of lateral coordinates. Even minute displacements of the source of
light and/or the detector change phase differences entirely, thereby destroying the
speckle pattern. Furthermore, the detector may view different parts of the surface at
different moments in time, thereby in effect recording an average over a temporally
varying surface profile. These two factors make the concept of a random rough sur-
face a good model for describing the results of many actual static measurements. De-
tailed information on this subject can be found in the books by Fung (1994), Tsang
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and Kong (2001), and Tsang et al. (2001) as well as in the recent reviews by Saillard
and Sentenac (2001), Elfouhaily and Guérin (2004), and Shchegrov et al. (2004) and
in the numerous publications cited therein.
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Figure 1.9.1.  Classification of electromagnetic scattering problems.
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One can also think of more complex problems involving different types of volume
and/or surface scattering. A good example is electromagnetic scattering by a layer of
continuous fluctuating medium comprising randomly positioned discrete particles and
bounded by random rough surfaces. Although problems like this one are important in
practice and have been treated using various phenomenological approaches, micro-
physical treatments based on consistent application of the Maxwell equations have
been extremely scarce.

1.10 Notes and further reading

A useful analytical modification of the Foldy–Lax approach to split the total field
scattered by a cluster into partial fields scattered by the individual components is the
so-called superposition T-matrix method. This technique, pioneered by Bruning and
Lo (1971a,b) and Peterson and Ström (1973), is based on expanding the fields enter-
ing the Foldy–Lax equations in appropriate sets of vector spherical wave functions
(see, e.g., Section 5.9 of MTL and Borghese et al., 2003). The fundamentals of the
superposition T-matrix method and its applications to various multiple-scattering
problems are described in Part 2 of Varadan and Varadan (1980), Chapter 6 of Tsang
and Kong (2001), and Section 10.4 of Tsang et al. (2001). This method becomes es-
pecially useful when one considers multiple scattering by densely packed media in
which particles are not located in each other’s far-field zones. A detailed list of rele-
vant publications can be found in the database compiled by Mishchenko et al.
(2004a). This database also cites publications in which the T-matrix method has been
applied to electromagnetic scattering by configurations involving a particle and an
infinite interface, either plane or rough.

The optics of laser speckles is discussed in the book edited by Dainty (1984). Dif-
fusing wave spectroscopy was pioneered by Maret and Wolf (1987) and Pine et al.
(1988). Detailed information about PCS and DWS and their diverse applications can
be found in the books by Cummins and Pike (1974, 1977), Crosignani et al. (1975),
Pecora (1985), Schmitz (1990), Chu (1991), Brown (1993, 1996), Pike and Abbiss
(1997), Sebbah (2001), Tuchin (2002, 2004), Albrecht et al. (2003), and van Tiggelen
and Skipetrov (2003) as well as in the recent feature issues of Applied Optics edited
by Meyer et al. (1997, 2001). An overview of the polarization-sensitive speckle spec-
troscopy can be found in Zimnyakov et al. (2004). The particle-shape sensitivity of
polarization PCS measurements has been studied by Pitter et al. (1999), Jakeman
(2000), Smith et al. (2001), Kusmartseva and Smith (2002), and Chang et al. (2002).

A review of inelastic scattering processes and their applications to optical particle
characterization can be found in Chapter 8 of Davis and Schweiger (2002). A good
number of particle characterization techniques are based on measurements of fre-
quency shifts due to the Doppler effect caused by nonzero particle velocities. Since
the scattering of the laser beam in the particle reference frame is still elastic and since
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the frequency changes measured in the laboratory reference frame are usually minute,
the underlying phenomenon is often referred to as quasi-elastic light scattering. A
comprehensive overview of various laser Doppler methods (LDMs) for measuring
particle velocities, sizes, and concentrations was published recently by Albrecht et al.
(2003).

Unlike the PCS, DWS, RTT, CB, and LDMs, which deal with groups of randomly
moving particles, the technique of optical coherence tomography (OCT) was specifi-
cally designed as a means of noninvasive optical characterization of stationary objects
with complex morphology such as biological tissues (see, e.g., the reviews by Schmitt
(1999) and Fercher et al. (2003) as well as the recent books edited by Bouma and
Tearney (2002) and Tuchin (2004)). This technique uses a spectrally broadband
source of light and a two-beam Michelson interferometer with the mirror in one arm
replaced by a turbid sample. By measuring the interference between the beams back-
scattered from the sample and from the moving reference mirror, one can measure the
depth and magnitude of optical scattering within the sample with micrometer-scale
precision (limited by the coherence length of the source). Scanning the light beam
across the sample produces a two-dimensional representation of the optical backscat-
tering of the sample’s cross section, which is often displayed as a gray-scale or false-
color image. Polarization-sensitive OCT uses the information contained in the polari-
zation state of the recorded interference fringe intensity to provide additional contrast
in the sample cross-sectional images (Schmitt and Xiang, 1998; de Boer and Milner,
2002).

The ergodic hypothesis was introduced by James Clerk Maxwell (1831–79) and
Ludwig Boltzmann (1844–1906) as a basic underlying principle of statistical me-
chanics. The details of the ergodic theory, its relation to the famous Poincaré recur-
rence theorem (Poincaré, 1890), and its applications to statistical mechanics and ki-
netic theory are described by Khinchin (1949), Uhlenbeck and Ford (1963), and Far-
quhar (1964). Interesting discussions of the ergodic hypothesis and specific examples
of nonergodic scattering media can be found in Pusey and van Megen (1989), Joosten
et al. (1990), Xue et al. (1992), Nisato et al. (2000), and Scheffold et al. (2001).
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Chapter 2

Maxwell equations, electromagnetic waves,
and Stokes parameters

The theoretical basis for describing single and multiple scattering of light by particles
is formed by classical electromagnetics. In order to make the book sufficiently self-
contained, this chapter provides a summary of those concepts and equations of elec-
tromagnetic theory that will be used extensively in later chapters and introduces the
necessary notation. We start by formulating the macroscopic Maxwell equations and
constitutive relations and discuss the fundamental time-harmonic plane-wave solution
that underlies the basic optical idea of a monochromatic parallel beam of light. This is
followed by the introduction of the Stokes parameters and a discussion of their ellip-
sometric content. Then we consider the concept of a quasi-monochromatic beam of
light and its implications and briefly discuss how the Stokes parameters of mono-
chromatic and quasi-monochromatic light can be measured in practice. In the final
two sections, we discuss another fundamental solution of the Maxwell equations in
the form of time-harmonic outgoing and incoming spherical waves and introduce the
concept of the coherency dyad of the electric field. The latter plays a vital role in the
theory of single and multiple light scattering by random particle ensembles.

2.1 Maxwell equations and constitutive relations

The theory of classical optics phenomena is based on the set of four Maxwell equa-
tions for the macroscopic electromagnetic field at interior points in matter, which in
SI units read:

), ,(    ) ,( tt rr ρ=⋅∇ D     (2.1.1)
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,) ,(     ) ,(
t

tt
∂

∂−=×∇ rr BE    (2.1.2)

,0    ) ,( =⋅∇ trB    (2.1.3)

,) ,() ,(    ) ,(
t

ttt
∂

∂+=×∇ rrr DJH    (2.1.4)

where E  is the electric and H  the magnetic field, B  the magnetic induction, D  the
electric displacement, and ρ  and J  the macroscopic (free) charge density and cur-
rent density, respectively. All quantities entering Eqs. (2.1.1)–(2.1.4) are functions of
time, t, and spatial coordinates, r. Implicit in the Maxwell equations is the continuity
equation

,0    ) ,() ,( =⋅∇+
∂

∂ t
t

t rr Jρ    (2.1.5)

which is obtained by combining the time derivative of Eq. (2.1.1) with the divergence
of Eq. (2.1.4) and taking into account the vector identity .0  )( =×∇⋅∇ a  The vector
fields entering Eqs. (2.1.1)–(2.1.4) are related by

), ,() ,(    ) ,( 0 ttt rrr PED += �     (2.1.6)

), ,() ,( 1    ) ,(
0

ttt rrr MBH −=
µ

   (2.1.7)

where P  is the electric polarization (average electric dipole moment per unit vol-
ume), M is the magnetization (average magnetic dipole moment per unit volume),
and 0�  and 0µ  are the electric permittivity and the magnetic permeability of free
space, respectively.

Equations (2.1.1)–(2.1.7) are insufficient for a unique determination of the electric
and magnetic fields from a given distribution of charges and currents and must be
supplemented with so-called constitutive relations:

), ,()(    ) ,( 0 tt rrr EP χ�=    (2.1.8)

), ,()(    ) ,( tt rrr HB µ=    (2.1.9)

), ,()(    ) ,( tt rrr EJ σ=           (2.1.10)

where χ  is the electric susceptibility, µ  the magnetic permeability, and σ  the con-
ductivity. Equations (2.1.6) and (2.1.8) yield

), ,()(    ) ,( tt rrr ED �=           (2.1.11)

where

)](1[    )( 0 rr χ+= ��        (2.1.12)

is the electric permittivity. For linear and isotropic media, ,χ  ,µ  ,σ  and � are sca-
lars independent of the fields. The microphysical derivation and the range of validity
of the macroscopic Maxwell equations are discussed in detail by Jackson (1998).
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The constitutive relations (2.1.9)–(2.1.11) connect the field vectors at the same
moment of time t and are valid for electromagnetic fields in a vacuum and also for
electromagnetic fields in macroscopic material media provided that the fields are con-
stant or vary in time rather slowly. For a rapidly varying field in a material medium,
the state of the medium depends not only on the current value of the field but also on
the values of the field at all previous times. Therefore, for a linear, time-invariant me-
dium, the constitutive relations (2.1.9)–(2.1.11) must be replaced by the following
general causal relations that take into account the effect of the prior history on the
electromagnetic properties of the medium:

), ,() ,(~d     ) ,(
  

  
ttttt

t

′′−′=
∞−

rrr ED �       (2.1.13)

), ,() ,(~d     ) ,(
  

  
ttttt

t

′′−′=
∞−

rrr HB µ           (2.1.14)

). ,() ,(~d     ) ,(
  

  
ttttt

t

′′−′=
∞−

rrr EJ σ           (2.1.15)

The medium characterized by the constitutive relations (2.1.13)–(2.1.15) is called
time-dispersive.

It is straightforward to rewrite the Maxwell equations and the continuity equation
in an integral form. Specifically, integrating Eqs. (2.1.2) and (2.1.4) over a surface S
bounded by a closed contour C (see Fig. 2.1.1) and applying the Stokes theorem,

,d     ˆ)(d 
  

  
AlnA ⋅=⋅×∇

CS
S           (2.1.16)

yields

,ˆd     d 
  

  
  nl ⋅

∂
∂−=⋅ BE S
t SC

          (2.1.17)

n̂

ld

Sd

S
C

Figure 2.1.1.  A finite surface S bounded by a closed contour C.
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,ˆd  ˆd   d 
  

  

  

  
  nnl ⋅

∂
∂+⋅=⋅ DJH S
t

S
SSC

        (2.1.18)

where we employ the usual convention that the direction of the differential length
vector ld  is related to the direction of the unit vector along the local normal to the
surface n̂  according to the right-hand rule.

Similarly, integrating Eqs. (2.1.1), (2.1.3), and (2.1.5) over a finite volume V
bounded by a closed surface S (see Fig. 2.1.2) and using the Gauss theorem,

,ˆd     d 
  

  
nAAr ⋅=⋅∇ S

SV
          (2.1.19)

we derive

,d     ˆd 
  

  
ρrn =⋅

VS
S D           (2.1.20)

,0    ˆd =⋅ nBS
S

          (2.1.21)

,d       ˆd 
  

  
ρrn

∂
∂−=⋅

VS t
S J           (2.1.22)

where the unit vector n̂  is directed along the outward local normal to the surface.

2.2 Boundary conditions

The Maxwell equations are strictly valid only for points in whose neighborhood the
physical properties of the medium, as characterized by the constitutive parameters ,χ

,µ  and ,σ  vary continuously. However, across an interface separating one medium
from another the constitutive parameters may change abruptly, and one may expect

V

n̂

S

Figure 2.1.2.  A finite volume V bounded by a closed surface S.
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similar discontinuous behavior of the field vectors ,E ,D ,H  and .B  The boundary
conditions at such an interface can be derived from the integral form of the Maxwell
equations as described below.

Consider two different continuous media separated by an interface S as shown in
Fig. 2.2.1. Let n̂  be a unit vector along the local normal to the interface, pointing
from medium 1 toward medium 2. Let us take the integral in Eq. (2.1.21) over the
closed surface of a small cylinder with bases parallel to a small surface element S∆
such that half of the cylinder is in medium 1 and half in medium 2. The contribution
from the curved surface of the cylinder vanishes in the limit ,0  ∆ →h  and we thus
obtain

,0    ˆ)( 12 =⋅− nBB       (2.2.1)

which means that the normal component of the magnetic induction is continuous
across the interface.

Similarly, evaluating the integrals on the left- and right-hand sides of Eq. (2.1.20)
over the surface and volume of the cylinder, respectively, we derive

,    ∆lim    ˆ)(
0∆

12 S
h

h ρρ ==⋅−
→

nDD       (2.2.2)

where Sρ  is the surface charge density (the charge per unit area) measured in cou-
lombs per square meter. Thus, there is a discontinuity in the normal component of D
if the interface carries a layer of surface charge density.

Let us now consider a small rectangular loop of area A∆  formed by sides of
length l∆  perpendicular to the local normal and ends of length h∆  parallel to the
local normal, as shown in Fig. 2.2.2. The surface integral on the right-hand side of Eq.
(2.1.17) vanishes in the limit ,0  ∆ →h

,0    )ˆˆ(∆∆lim    )ˆˆ(d  lim
0∆

  

∆  0∆
=×⋅=×⋅

→→
lnln BB hlS

hAh

S S

n̂
h

1Medium

2Medium

Figure 2.2.1.  Pillbox used in the derivation of the boundary conditions for B and D.
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so that

.0    )(ˆ
12 =−⋅ EEl        (2.2.3)

Since the orientation of the rectangle – and hence also of l̂  – is arbitrary, Eq. (2.2.3)
means that the vector 12 EE −  must be perpendicular to the interface. Thus,

,    )(ˆ 12 0n =−× EE       (2.2.4)

where 0 is a zero vector. This implies that the tangential component of E is continu-
ous across the interface.

Similarly, Eq. (2.1.18) yields

,)ˆˆ()ˆˆ(∆ lim)(ˆ
0∆

12 S
h

h JJHH ⋅×=⋅×=−⋅
→

lnlnl             (2.2.5)

where SJ  is the surface current density measured in amperes per meter. Since

,ˆ)ˆˆ(    ˆ nlnl ××= (2.2.6)

we can use the vector identity

)(    )( cbacba ×⋅=⋅×        (2.2.7)

to derive

.)ˆˆ(  )](ˆ[)ˆˆ(   )(]ˆ)ˆˆ[(  1212 SJHHHH ⋅×=−×⋅×=−⋅×× lnnlnnln (2.2.8)

Taking into account that this equality must be valid for any orientation of the rectan-
gle and, thus, of the tangent unit vector l̂  finally yields

,  )(ˆ   12 SJHH =−×n    (2.2.9)

Figure 2.2.2.  Rectangular loop used in the derivation of the boundary conditions for E
and  H.
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which means that there is a discontinuity in the tangential component of H if the in-
terface can carry a surface current. Media with finite conductivity cannot support sur-
face currents, so that

0n =−× )(ˆ 12 HH   (finite conductivity).         (2.2.10)

The boundary conditions (2.2.1), (2.2.2), (2.2.4), (2.2.9), and (2.2.10) are useful in
solving the differential Maxwell equations in different adjacent regions with continu-
ous physical properties and then linking the partial solutions to determine the fields
throughout all space.

2.3 Time-harmonic fields

Let us now assume that all fields and sources are time harmonic (or monochromatic),
which means that their time dependence can be fully described by expressing them as
sums of terms proportional to either tωcos  or ,sin tω  where ω  is the angular fre-
quency. It is standard practice to represent real monochromatic fields as real parts of
the respective complex fields, e.g.,

)]iexp()(Re[    ) ,(Re    ) ,( ttt ω−== rErErE

     )]exp(i)()iexp()([  2
1 tt ωω rErE ∗+−=    (2.3.1)

and analogously for ,D ,H ,B ,J ,ρ ,P  and ,M  where )(rE  is complex, and the
asterisk denotes a complex-conjugate value.1 Equations (2.1.1)–(2.1.5) then yield the
following frequency-domain Maxwell equations and continuity equation for the time-
independent components of the complex fields:

),(ρ    )( rrD =⋅∇    (2.3.2)

),(i    )( rBrE ω=×∇       (2.3.3)

,0    )( =⋅∇ rB        (2.3.4)

),(i)(    )( rDrJrH ω−=×∇      (2.3.5)

,0    )()(ρi =⋅∇+− rJrω (2.3.6)

where we emphasize the typographical distinction between the symbols for the real
quantities ,E ,D ,H ,B ,J  and ρ  and for their complex counterparts E, D, H, B, J,
and ρ.

                                                
1 A complex vector is formally defined as a = b + ic, where b and c are usual real vectors. All
operations with complex vectors are defined in a way analogous to the definition of operations
with complex numbers and real vectors. For example, the complex conjugate ∗a  is defined as
the complex vector b – ic, the scalar product of two complex vectors a = b + ic and d = e + if
with real b, c, e, and f is defined as a · d = b · e – c · f + i(b · f + c · e), etc.
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The constitutive relations remain unchanged in the frequency domain for a non-
dispersive medium:

),()(    )( rErrD �=    (2.3.7)

),()(    )( rHrrB µ=    (2.3.8)

).()(    )( rErrJ σ=          (2.3.9)

For a time-dispersive medium, we can substitute the monochromatic fields of the
form (2.3.1) into Eqs. (2.1.13)–(2.1.15), which yields

),() ,(    )( rErrD ω�=           (2.3.10)

),() ,µ(    )( rHrrB ω=           (2.3.11)

),() ,σ(    )( rErrJ ω=           (2.3.12)

where

),iexp() ,(~d     ) ,(
  

0  
ttt ωω rr �

∞

=�          (2.3.13)

),iexp() ,(~d     ) ,µ(
  

0  
ttt ωµω rr

∞

=           (2.3.14)

)iexp() ,(~d     ) ,σ(
  

0  
ttt ωσω rr

∞

=           (2.3.15)

are complex functions of the angular frequency. Note that we use sloping Greek let-
ters in Eqs. (2.3.7)–(2.3.9) and upright Greek letters in Eqs. (2.3.10)–(2.3.12) to dif-
ferentiate between the frequency-independent and the frequency-dependent constitu-
tive parameters, respectively. Equations (2.3.2) and (2.3.5) can be rewritten in the
form

,0    )]() ,([ =⋅∇ rEr ωε           (2.3.16)

),() ,(i    )( rErrH ωεω−=×∇          (2.3.17)

where

ω
ωωωε ) ,(σi) ,(    ) ,( rrr += �            (2.3.18)

is the so-called complex permittivity. Again, the reader should note the typographical
distinction between the frequency-dependent electric permittivity � (which can, in
principle, be complex-valued for a dispersive medium) and the complex permittivity

.ε  We will show later that a direct consequence of a complex-valued ε  and/or µ  is a
non-zero imaginary part of the refractive index (Eq. (2.5.19)), which causes absorp-
tion of electromagnetic energy (Eq. (2.5.20)) by converting it into other forms of en-
ergy, e.g., heat.

It is straightforward to verify that the frequency-domain form of the integral
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counterparts of the Maxwell equations (2.1.17), (2.1.18), (2.1.20), and (2.1.21) is as
follows:

,ˆ)() ,(µd  i)(d 
  

  
nrHrrEl ⋅=⋅ ωω S

SC
          (2.3.19)

,ˆ)() ,(d i)(d 
  

  
nrErrHl ⋅−=⋅ ωεω S

SC
        (2.3.20)

,0    ˆ)() ,(d =⋅ nrEr ωεS
S

          (2.3.21)

.0    ˆ)() ,(µd =⋅ nrHr ωS
S

           (2.3.22)

The linearity of these equations with respect to E(r) and H(r) leads to the fundamen-
tal principle of superposition: if the electromagnetic fields [E1(r), H1(r)] and [E2(r),
H2(r)] are solutions of the Maxwell equations, then the electromagnetic field [E1(r) +
E2(r), H1(r) + H2(r)] is also a solution.

Neither the scalar nor the vector product of two real vector fields is equal to the
real part of the respective product of the corresponding complex vector fields. Instead,

),(),(    ),( ttt rrr GA ⋅=C

   )]exp(i)()iexp()([  4
1 tt ωω rArA ∗+−=

      )]exp(i)()iexp()([ tt ωω rGrG ∗+−⋅

    )],i2exp()()()()(Re[  2
1 tω−⋅+⋅= ∗ rGrArGrA     (2.3.23)

and similarly for a vector product. Usually the angular frequency ω  is so high that
traditional optical measuring devices are not capable of following the rapid oscilla-
tions of the instantaneous product values but rather respond to a time average

), ,(d  1    ) ,(
  

  
tt

T
t

Tt

t
t ′′=��

+

rr CC          (2.3.24)

where T is a time interval long compared with the period of the time-harmonic oscil-
lations, .2 ωπ  Therefore, Eqs. (2.3.23) and (2.3.24) imply that the time average of a
product of two real fields is equal to one half of the real part of the respective product
of one complex field with the complex conjugate of the other, e.g.,

)].()(Re[    ) ,( 2
1 rBrAr ∗⋅=�� ttC          (2.3.25)

2.4 The Poynting vector

Both the value and the direction of the electromagnetic energy flow are described by
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the so-called Poynting vector S  (Jackson, 1998). The expression for S  can be de-
rived by considering conservation of energy and taking into account that the magnetic
field does no work and that for a local charge q the rate of doing work by the electric
field is ), ,() ,() ,( tttq rrvr E⋅  where v is the velocity of the charge.

Indeed, the total rate of work done by the electromagnetic field in a finite volume
V is given by

) ,() ,(d 
  

  
tt

V
rrr EJ ⋅    (2.4.1)

and represents the rate of conversion of electromagnetic energy into mechanical or
thermal energy. This power must be balanced by the corresponding rate of decrease of
the electromagnetic field energy within the volume V. Using Eqs. (2.1.2) and (2.1.4)
and the vector identity

),()(    )( baabba ×∇⋅−×∇⋅=×⋅∇    (2.4.2)

we derive
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Let us first consider a linear medium without dispersion and introduce the total elec-
tromagnetic energy density,

)], ,() ,() ,() ,([    ) ,( 2
1 ttttt rrrrr BHDE ⋅+⋅=U    (2.4.4)

and the Poynting vector,

). ,() ,(    ) ,( ttt rrr HES ×=    (2.4.5)

The latter represents electromagnetic energy flow and has the dimension [en-
ergy/(area � time)]. Using also the Gauss theorem (2.1.19), we finally obtain

,0d ˆd d 
  

  

  

  
=

∂
∂+⋅+⋅

t
S

VSV

Urnr SEJ    (2.4.6)

where the closed surface S bounds the volume V and n̂  is a unit vector in the direc-
tion of the local outward normal to the surface. Equation (2.4.6) manifests the conser-
vation of energy by requiring that the rate of the total work done by the fields on the
sources within the volume, the rate of change of electromagnetic energy within the
volume, and the electromagnetic energy flowing out through the volume boundary per
unit time add up to zero. Since the volume V is arbitrary, Eq. (2.4.3) can also be writ-
ten in the form of a differential continuity equation:
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.    EJS ⋅−=⋅∇+
∂
∂

t
U     (2.4.7)

Owing to the vector identity ,0  )( =×∇⋅∇ a  it is clear from Eq. (2.4.7) that add-
ing the curl of a vector field to the Poynting vector will not change the energy bal-
ance. This seems to suggest that there is a degree of arbitrariness in the definition of
the Poynting vector. However, relativistic considerations discussed in Section 12.10
of Jackson (1998) show that the definition (2.4.5) is, in fact, unique.

Let us now allow the medium to be dispersive. Instead of Eq. (2.4.1), we now
consider the integral

)()(d  
2
1   

  
rErJr ⋅∗

V
   (2.4.8)

whose real part gives the time-averaged rate of work done by the electromagnetic
field (cf. Eq. (2.3.25)). Using Eqs. (2.3.3), (2.3.5), and (2.4.2), we derive
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If we now define the complex Poynting vector by

)]()([    )( 2
1 rHrErS ∗×=     (2.4.10)

and the complex electric and magnetic energy densities by

)],()([    )( 4
1

e rDrEr ∗⋅=w           (2.4.11)

)],()([    )( 4
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m rHrBr ∗⋅=w            (2.4.12)

respectively, and apply the Gauss theorem, we then have
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Obviously, the real part of Eq. (2.4.13) manifests the conservation of energy for the
corresponding time-averaged quantities. In particular, the time-averaged Poynting
vector tt �� ),(rS  is equal to the real part of the complex Poynting vector,

)].(Re[    ) ,( rSr =�� ttS            (2.4.14)

The net rate W at which the electromagnetic energy crosses the closed surface S is
given by
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.ˆ) ,(d     nr ⋅��−= t
S

tSW S          (2.4.15)

The rate is defined such that it is positive if there is a net transfer of electromagnetic
energy into the volume V and is negative otherwise.

2.5 Plane-wave solution

Consider an infinite homogeneous medium without sources. The use of the formulas

,    )( fff ∇⋅+⋅∇=⋅∇ aaa    (2.5.1)

,)(    )( aaa ×∇+×∇=×∇ fff    (2.5.2)

)iexp(i    )iexp( rkkrk ⋅=⋅∇    (2.5.3)

in Eqs. (2.3.3), (2.3.4), (2.3.16), and (2.3.17) shows that the complex field vectors

),i  iexp(    ) ,( 0 tt ω−⋅= rkErE    (2.5.4)

),i  iexp(    ) ,( 0 tt ω−⋅= rkHrH    (2.5.5)

where ,0E ,0H and k are constant complex vectors, are a solution of the Maxwell
equations provided that

,0    0 =⋅Ek         (2.5.6)

,0    0 =⋅Hk    (2.5.7)

,µ    00 HEk ω=×    (2.5.8)

.    00 EHk εω−=×    (2.5.9)

The so-called wave vector k is usually expressed as

,i    IR kkk +=           (2.5.10)

where Rk  and Ik  are real vectors.  Thus

),i  iexp()exp(    ) ,( RI0 tt ω−⋅⋅−= rkrkErE           (2.5.11)

).i  iexp()exp(    ) ,( RI0 tt ω−⋅⋅−= rkrkHrH           (2.5.12)

)exp( I0 rkE ⋅−  and )exp( I0 rkH ⋅−  are the complex amplitudes of the electric and
magnetic fields, respectively, and tωφ   R −⋅= rk  is their phase.

The vector Rk  is normal to the surfaces of constant phase, whereas Ik  is normal
to the surfaces of constant amplitude. Indeed, a plane surface normal to a real vector
K is described by constant,    =⋅Kr  where r is the radius vector drawn from the ori-
gin of the reference frame to any point in the plane (see Fig. 2.5.1). Also, it is easy to
see that surfaces of constant phase propagate in the direction of Rk  with the phase
velocity
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.
||
      

Rk
ω=v           (2.5.13)

Indeed, the planes corresponding to the instant times t and tt ∆+  are separated by the
distance ||∆    ∆ Rkts ω=  (see Fig. 2.5.2), which gives Eq. (2.5.13). Thus Eqs. (2.5.4)
and (2.5.5) describe a plane electromagnetic wave propagating in a homogeneous

KrKrKr
K

⋅=⋅=⋅ 321

:tonormalsurfacePlane

O

K

1r

2r

3r

Figure 2.5.1.  Plane surface normal to a real vector K.
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Figure 2.5.2.  The plane of constant phase constant    =φ  travels a distance s∆  over the time
period .∆t  The s-axis is drawn from the origin of the coordinate system along the vector .Rk
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medium without sources. This is a very important solution of the Maxwell equations
because it embodies the concept of a perfectly monochromatic parallel beam of light
of infinite lateral extent and represents the transport of electromagnetic energy from
one point to another.

Equations (2.5.4), (2.5.5), and (2.5.8) yield

).,( 
µ

1    ),( tt rEkrH ×=
ω

          (2.5.14)

Therefore, a plane electromagnetic wave always can be considered in terms of only
the electric (or only the magnetic) field.

The electromagnetic wave is called homogeneous if Rk  and Ik  are parallel (in-
cluding the case Ik = 0); otherwise it is called inhomogeneous. When , IR kk  the
complex wave vector can be expressed as ,ˆ)i (  IR nk kk +=  where n̂  is a real unit
vector in the direction of propagation and both Rk  and Ik  are real and nonnegative.

According to Eqs. (2.5.6) and (2.5.7), the plane electromagnetic wave is trans-
verse: both 0E  and 0H  are perpendicular to k. Furthermore, it is evident from either
Eq. (2.5.8) or Eq. (2.5.9) that 0E  and 0H  are mutually perpendicular: .0    00 =⋅ HE
Since ,0E ,0H  and k are, in general, complex vectors, the physical interpretation of
these facts can be far from obvious. It becomes most transparent when both ,ε  ,µ
and k are real. The reader can verify that in this case the real field vectors E  and H
are mutually perpendicular and lie in a plane normal to the direction of wave propa-
gation n̂  (see Fig. 2.5.3).

Plane of constant phase
and constant amplitude

n̂

r

y

x

O

z H

E

Figure 2.5.3.  Plane wave propagating in a homogeneous medium with no dispersion and
losses.
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Taking the vector product of k with the left-hand side and the right-hand side of
Eq. (2.5.8) and using Eq. (2.5.9) and the vector identity

)()(    )( baccabcba ⋅−⋅=××           (2.5.15)

together with Eq. (2.5.6) yields

.µ    2εω=⋅ kk           (2.5.16)

In the practically important case of a homogeneous plane wave, we obtain from Eq.
(2.5.16)

,    µ    i    IR c
kkk mωεω ==+=          (2.5.17)

where k is the wave number,

00

1    
µ�

=c           (2.5.18)

is the speed of light in a vacuum, and

µ    µ    i          
00

IR ε
µ

ε
ω

cck ==+==
�

mmm          (2.5.19)

is the complex refractive index with a nonnegative real part Rm  and a nonnegative
imaginary part .Im  Thus, the complex electric field vector of the homogeneous plane
wave has the form

.i  ˆ  iexp ˆ exp    ) ,( RI0 �
�

�
�
�

� −⋅�
�

�
�
�

� ⋅−= t
cc

t ωωω rnrnErE mm     (2.5.20)

If the imaginary part of the refractive index is nonzero then it determines the decay of
the amplitude of the wave as it propagates through the medium, which is thus ab-
sorbing. On the other hand, a medium is nonabsorbing if it is nondispersive �    ( =�

and )  µ  µ=  and lossless ),0  σ( =  which causes the refractive index ==    Rm  m
21)( µ�c  to be real-valued. The real part of the refractive index determines the phase

velocity of the wave:

.    
Rm

c=v           (2.5.21)

In a vacuum, 1      R == mm  and .  c=v
As follows from Eqs. (2.4.10), (2.4.14), (2.5.4), (2.5.5), (2.5.8), and (2.5.15), the

time-averaged Poynting vector of a plane wave is

.
µ2

)]()[()]()([Re    ) ,( ��
�

�
��
�

� ⋅−⋅=�� ∗

∗∗∗∗

ω
rEkrErErEkr ttS     (2.5.22)

If the wave is homogeneous then 0  )( =⋅ rEk  and so .0  )( =⋅∗ rEk  Therefore,
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�
=�� m

c
t t

ωεS         (2.5.23)

Thus, tt �� ) ,(rS  is in the direction of propagation and its absolute value, called the
intensity, is attenuated exponentially provided that the medium is absorbing:

),ˆexp(    |) ,(|    )( 0 rnrr ⋅−=��= αItI tS           (2.5.24)

where 0I  is the intensity at r = 0.  The absorption coefficient α  is

,4    2    
0

I
I λ

πωα m
m ==

c
          (2.5.25)

where

ω
πλ c2    0 =           (2.5.26)

is the free-space wavelength. The intensity has the dimension of monochromatic en-
ergy flux, [energy/(area× time)], and is equal to the amount of electromagnetic energy
crossing a unit surface element normal to n̂  per unit time.

The expression for the time-averaged energy density of a time-harmonic electro-
magnetic field existing in a medium without dispersion follows from Eqs. (2.3.7),
(2.3.8), (2.3.25), and (2.4.4):

)].()()()([    ) ,( 4
1 rHrHrErEr ∗∗ ⋅+⋅=�� µ�ttU           (2.5.27)

Assuming further that the medium is lossless and recalling Eqs. (2.5.6), (2.5.8), and
(2.5.16) as well as the vector identity

),)(())((    )()( cbdadbcadcba ⋅⋅−⋅⋅=×⋅×           (2.5.28)

we derive for a plane electromagnetic wave

.||    ) ,( 2
02

1 Er �=�� ttU           (2.5.29)

Comparison of Eqs. (2.5.23), (2.5.24), and (2.5.29) shows that

,) ,(    ) ,( 1    )( tt ttI ��=��= rrr UU v
µ�

          (2.5.30)

where v is the speed of light in the nonabsorbing material medium. The physical in-
terpretation of this result is quite clear: the amount of electromagnetic energy crossing
a surface element of unit area normal to the direction of propagation per unit time is
equal to the product of the speed of light and the amount of electromagnetic energy
per unit volume.

Figure 2.5.4 gives a simple example of a plane electromagnetic wave propagating
along the y-axis in a nonabsorbing homogeneous medium and described by the fol-
lowing real electric and magnetic field vectors:
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,ˆ)2    cos(    ),( zr πω −−= tkyt EE           (2.5.31)

,ˆ)2    cos(    ),( xr πω −−= tkyt HH           (2.5.32)

where ,E ,H  and k are real and x̂  and ẑ  are the unit vectors along the x-axis and the
z-axis, respectively. Panel (a) shows the electric and magnetic fields as a function of y
at the moment t = 0, while panel (b) depicts the fields as a function of time at any
point in the plane y = 0. The period of the sinusoids in panel (a) is given by

k
πλ 2    =           (2.5.33)

and defines the wavelength of light in the nonabsorbing material medium, whereas
the period of the sinusoids in panel (b) is equal to .2 ωπ

It is straightforward to verify that a choice of the time dependence )iexp( tω
rather than )iexp( tω−  in the complex representation of time-harmonic fields in Eq.
(2.3.1) would have led to IR i  mmm −=  with a nonnegative .Im  The )iexp( tω−
time-factor convention adopted here has been used in many books on optics and light
scattering (e.g., Born and Wolf, 1999; Bohren and Huffman, 1983; Barber and Hill,
1990; MTL), electromagnetics (e.g., Stratton, 1941; Jackson, 1998; Tsang et al.,
2000; Kong, 2000), and solid-state physics (e.g., Kittel, 1963). However, van de Hulst
(1957), Kerker (1969), and Hovenier et al. (2004) used the time factor ),iexp( tω
which implies a nonpositive imaginary part of the complex refractive index. It does
not matter in the final analysis which convention is chosen because all measurable
quantities of practical interest are always real. However, it is important to remember
that once a choice of the time factor has been made, its consistent use throughout all
derivations is imperative.

x

y

z

E

H

x

z

(a)

(b)

t

 

H

E

λ

ωπ2

Figure 2.5.4.  Plane electromagnetic wave described by Eqs. (2.5.31) and (2.5.32).
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2.6 Coherency matrix and Stokes parameters

Traditional optical devices cannot measure the electric and magnetic fields associated
with a beam of light; rather they measure quantities that are time averages of real-
valued linear combinations of products of field vector components and have the di-
mension of the intensity. In order to define these quantities, we use polar spherical
coordinates associated with the local right-handed Cartesian coordinate system with
origin at the observation point, as shown in Fig. 2.6.1. Assuming that the medium is
homogeneous and has no dispersion and losses, we specify the direction of propaga-
tion of a plane electromagnetic wave by a unit vector n̂  or, equivalently, by a couplet

}, ,{ ϕθ  where ] ,0[ πθ ∈  is the polar (zenith) angle measured from the positive z-axis
and )2 ,0[ πϕ ∈  is the azimuth angle measured from the positive x-axis in the clock-
wise direction when looking in the direction of the positive z-axis. Since the compo-
nent of the electric field vector along the direction of propagation n̂  is equal to zero,
the electric field at the observation point can be expressed as

,    ϕθ EEE +=

where θE  and ϕE  are the -θ  and components-ϕ of the electric field vector, respec-
tively. The component

θE ˆ    θθ E=

lies in the meridional plane (i.e., the plane through n̂  and the z-axis), whereas the
component

ϕ

θ

x

yO

z
ϕ̂

n̂ ×= ϕ̂θ̂ θ̂

Figure 2.6.1.  Local coordinate system used to describe the direction of propagation and the
polarization state of a plane electromagnetic wave at the observation point O.



Chapter 238

φE ˆ    ϕϕ E=

is perpendicular to this plane.2 θ̂  and φ̂  are the corresponding unit vectors such that

.ˆˆ    ˆ φθn ×=

The specification of a unit vector n̂  uniquely determines the meridional plane of
the propagation direction except when n̂  is oriented along the positive or negative
direction of the z-axis. Although it may seem redundant to specify ϕ  in addition to θ
when 0    =θ  or ,π  the unit -θ  and vectors-ϕ and, thus, the electric-field vector
components θE  and ϕE  still depend on the orientation of the meridional plane.
Therefore, we will always assume that the specification of n̂  implicitly includes the
specification of the appropriate meridional plane in cases when n̂  is parallel to the z-
axis. To minimize confusion, we often will specify explicitly the direction of propa-
gation using the angles θ  and ;ϕ  the latter uniquely defines the meridional plane
when 0    =θ  or .π

Consider a plane electromagnetic wave propagating in a homogeneous medium
without dispersion and losses and given by

)i  ˆiexp(    ),( 0 tkt ω−⋅= rnErE    (2.6.1)

with a real k. The simplest complete set of linearly independent quadratic combina-
tions of the electric field vector components with nonzero time averages consists of
the following four quantities:

,   )],([),( 00
∗∗ = θθθθ EEtEtE rr         ,   )],([),( 00

∗∗ = ϕθϕθ EEtEtE rr

,   )],([),( 00
∗∗ = θϕθϕ EEtEtE rr         .   )],([),( 00

∗∗ = ϕϕϕϕ EEtEtE rr

The products of these quantities and 21
2
1 )( µ�  have the dimension of monochromatic

energy flux and form the 22×  coherency (or density) matrix ρ  (Born and Wolf,
1999):
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µρρ
ρρ

EEEE
EEEE�ρ    (2.6.2)

The completeness of the set of the four coherency matrix elements means that any
plane-wave characteristic directly observable with a traditional optical instrument is a
real-valued linear combination of these quantities.

Since 12ρ  and 21ρ  are, in general, complex, it is convenient to introduce an alter-
native complete set of four real, linearly independent quantities called Stokes pa-
rameters. We first group the elements of the 22×  coherency matrix into a 14×  co-
herency column vector:
                                                
2 In the microwave remote-sensing literature, Eθ and Eφ are often denoted as Ev and Eh and
called the vertical and horizontal electric-field vector components, respectively (e.g., Ulaby and
Elachi, 1990; Tsang et al., 2000).
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The Stokes parameters I, Q, U, and V are then defined as the elements of a 14×
Stokes column vector I as follows:
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where
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Conversely,

,    1IDJ −=    (2.6.6)

where the inverse of D is given by

.

0011
i100

i100
0011

 
2
1    1

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
−−

−
=−D    (2.6.7)

By virtue of being real-valued and having the dimension of energy flux, the
Stokes parameters form a complete set of quantities needed to characterize a plane
electromagnetic wave, inasmuch as it is subject to practical analysis. This means that:

● Any other observable quantity is a linear combination of the four Stokes pa-
rameters.

● It is impossible to distinguish between two plane waves with the same values
of the Stokes parameters using a traditional optical device (the so-called prin-
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ciple of optical equivalence).

Indeed, the two complex amplitudes )iexp(0 θθθ ∆aE =  and )iexp(0 ϕϕϕ ∆aE =  are
characterized by four real numbers: the nonnegative amplitudes θa  and ϕa  and the
phases θ∆  and .∆∆∆ θϕ −=  The Stokes parameters carry information about the am-
plitudes and the phase difference ,∆  but not about .θ∆  The latter is the only quantity
that could be used to distinguish different waves with the same ,θa  ,ϕa  and ∆  (and
thus the same Stokes parameters), but it vanishes when a field vector component is
multiplied by the complex conjugate value of the same or another field vector com-
ponent.

The first Stokes parameter, I, is the intensity introduced in the previous section,
with the explicit definition here applicable to a homogeneous, nonabsorbing medium
(cf. Eqs. (2.5.23), (2.5.24), and (2.6.4)). The Stokes parameters Q, U, and V describe
the polarization state of the wave. The ellipsometric interpretation of the Stokes pa-
rameters will be the subject of the next section. It is easy to verify that the Stokes pa-
rameters of a plane monochromatic wave are not completely independent but rather
are related by the quadratic so-called Stokes identity

.   2222 VUQI ++=    (2.6.8)

We will see later, however, that this identity may not hold for a quasi-monochromatic
beam of light.

The coherency matrix and the Stokes column vector are not the only representa-
tions of polarization and not always the most convenient ones. Two other frequently
used representations are the real so-called modified Stokes column vector given by
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and the complex circular-polarization column vector defined as
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where
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It is easy to verify that
MS1    IBI −=           (2.6.13)

and
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The usefulness of the modified Stokes and circular-polarization column vectors will
be illustrated in the following section.

We conclude this section with a caution. It is important to remember that whereas
the Poynting vector can be defined for an arbitrary electromagnetic field, the Stokes
parameters can only be defined for transverse fields such as plane waves discussed in
the previous section or spherical waves discussed in Section 2.11. Quite often the
electromagnetic field at an observation point is not a well-defined transverse electro-
magnetic wave, in which case the Stokes vector formalism cannot be applied directly.

2.7 Ellipsometric interpretation of the Stokes parameters

In this section we show how the Stokes parameters can be used to derive the ellip-
sometric characteristics of the plane electromagnetic wave given by Eq. (2.6.1).
Writing

),iexp(    0 θθθ ∆aE =    (2.7.1)
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)iexp(    0 ϕϕϕ ∆aE =    (2.7.2)

with real nonnegative amplitudes θa  and ϕa  and real phases θ∆  and ϕ∆  and re-
calling the definition (2.6.4), we obtain for the Stokes parameters

),(  
2
1    22

ϕθµ
aaI += �    (2.7.3)

),(  
2
1    22

ϕθµ
aaQ −= �    (2.7.4)

,cos      ∆
µ ϕθ aaU �−=    (2.7.5)

,sin     ∆
µ ϕθ aaV �=    (2.7.6)

where

.    ϕθ ∆∆∆ −=    (2.7.7)

Substituting Eqs. (2.7.1) and (2.7.2) in Eqs. (2.3.1) and (2.6.1), we have for the
real electric field vector components

), cos(    ) ,( tat ωδθθθ −=rE    (2.7.8)

),cos(    ) ,( tat ωδϕϕϕ −=rE    (2.7.9)

where

,ˆ    rn ⋅+= kθθ ∆δ           (2.7.10)

.ˆ    rn ⋅+= kϕϕ ∆δ           (2.7.11)

At any fixed point O in space, the endpoint of the real electric field vector given by
Eqs. (2.7.8)–(2.7.11) describes an ellipse with specific major and minor axes and ori-
entation (see the top panel of Fig. 2.7.1). The major axis of the ellipse makes an angle
ζ  with the positive direction of the axis-ϕ such that ).,0[  πζ ∈  By definition, this
orientation angle is obtained by rotating the axis-ϕ in the clockwise direction when
looking in the direction of propagation, until it is directed along the major axis of the
ellipse. The ellipticity is defined as the ratio of the minor to the major axes of the el-
lipse and is usually expressed as |,tan| β  where ].4,4[  ππβ −∈  By definition, β
is positive when the real electric field vector at O rotates clockwise, as viewed by an
observer looking in the direction of propagation (Fig. 2.7.1(a)). The polarization for
positive β  is called right-handed, as opposed to the left-handed polarization corre-
sponding to the anti-clockwise rotation of the electric field vector.

To express the orientation ζ  of the ellipse and the ellipticity |tan| β  in terms of
the Stokes parameters, we first write the equations representing the rotation of the real
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(a) Polarization ellipse

(b) Elliptical polarization (V ≠ 0)

(c) Linear polarization (V = 0)

(d) Circular polarization (Q = U = 0)

Q < 0 U = 0 V < 0 Q > 0 U = 0 V > 0 Q = 0 U > 0 V < 0 Q = 0 U < 0 V > 0

Q = –I U = 0 Q = I U = 0 Q = 0 U = = 0 U = –I

V = – = I

E

q θ

p

ϕ

ζβ

I Q

I V

Figure 2.7.1.  Ellipse described by the tip of the real electric vector at a fixed point O in space
(top panel) and particular cases of elliptical, linear, and circular polarization. The plane
electromagnetic wave propagates towards the reader.
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electric field vector at O in the form

),sin(sin    ) ,( tatq ωδβ −=rE           (2.7.12)

),cos(cos    ) ,( tatp ωδβ −=rE           (2.7.13)

where pE  and qE  are the electric field components along the major and minor axes
of the ellipse, respectively, Fig. 2.7.1(a). One easily verifies that a positive (negative)
β  indeed corresponds to the right-handed (left-handed) polarization. The connection
between Eqs. (2.7.8)–(2.7.11) and Eqs. (2.7.12)–(2.7.13) can be established by using
the simple transformation rule for rotation of a two-dimensional coordinate system:

,sin) ,(cos) ,(    ) ,( ζζθ ttt pq rrr EEE +−=           (2.7.14)

.cos) ,(sin) ,(    ) ,( ζζϕ ttt pq rrr EEE −−=           (2.7.15)

By equating the coefficients of tωcos  and tωsin  in the expanded Eqs. (2.7.8) and
(2.7.9) with those in (2.7.14) and (2.7.15), we obtain

,sincoscoscossinsin    cos ζδβζδβδθθ aaa +−=     (2.7.16)

,sinsincoscoscossin    sin ζδβζδβδθθ aaa +=     (2.7.17)

,coscoscossinsinsin    cos ζδβζδβδϕϕ aaa −−=     (2.7.18)

.cossincossincossin    sin ζδβζδβδϕϕ aaa −=     (2.7.19)

Squaring and adding Eqs. (2.7.16) and (2.7.17) and Eqs. (2.7.18) and (2.7.19) gives

),sincoscos(sin    222222 ζβζβθ += aa     (2.7.20)

).coscossin(sin    222222 ζβζβϕ += aa         (2.7.21)

Multiplying Eqs. (2.7.16) and (2.7.18) and Eqs. (2.7.17) and (2.7.19) and adding
yields

.2sin2cos     cos 2
2
1 ζβ∆ϕθ aaa −=           (2.7.22)

Similarly, multiplying Eqs. (2.7.17) and (2.7.18) and Eqs. (2.7.16) and (2.7.19) and
subtracting gives

.2sin     sin 2
2
1 β∆ϕθ aaa −=          (2.7.23)

Comparing Eqs. (2.7.3)–(2.7.6) with Eqs. (2.7.20)–(2.7.23), we finally derive

,  
2
1    2aI

µ
�=           (2.7.24)

,2cos2cos    ζβIQ −=          (2.7.25)

,2sin2cos    ζβIU =           (2.7.26)

.2sin    βIV −=           (2.7.27)



Maxwell equations, electromagnetic waves, and Stokes parameters 45

The parameters of the polarization ellipse are thus expressed in terms of the
Stokes parameters as follows. The major and minor axes are given by

βµ cos2 �I

and

|,sin| 2 βµ �I

respectively (cf. Eqs. (2.7.12) and (2.7.13)).  Equations (2.7.25) and (2.7.26) yield

.     2tan
Q
U−=ζ           (2.7.28)

Because ,4    || πβ ≤  we have 0  2cos ≥β  so that ζ2cos  has the same sign as .Q−
Therefore, from the different values of  ζ  that satisfy Eq. (2.7.28) but differ by ,2π
we must choose the one that makes the sign of ζ2cos  to be the same as that of  .Q−
The ellipticity and handedness follow from

.
  

     2tan
22 UQ

V
+

−=β          (2.7.29)

Thus, the polarization is left-handed if V is positive and is right-handed if V is nega-
tive (Fig. 2.7.1(b)).

The electromagnetic wave becomes linearly polarized when β  vanishes; then the
electric field vector vibrates along the line making the angle ζ  with the axis-ϕ (Fig.
2.7.1(a)) and V = 0. Furthermore, if 0=ζ  or 2πζ =  then U vanishes as well. This
explains the usefulness of the modified Stokes representation of polarization given by
Eq. (2.6.9) in situations involving linearly polarized light as follows. The modified
Stokes column vector has only one nonzero element and is equal to T]0  0  0  [I  if

2πζ =  (the electric field vector vibrates along the axis,-θ i.e., in the meridional
plane) or T]0  0    0[ I  if 0=ζ  (the electric field vector vibrates along the axis,-ϕ i.e.,
in the plane perpendicular to the meridional plane), where T indicates the transpose of
a matrix (see Fig. 2.7.1(c)). 

If, however, ,4    πβ ±=  then both Q and U vanish, and the electric field vector
describes a circle in the clockwise )   ,4  ( IV −== πβ  or anti-clockwise =  (β

)      ,4 IV =−π  direction, as viewed by an observer looking in the direction of propa-
gation (Fig. 2.7.1(d)). In this case the electromagnetic wave is circularly polarized;
the circular-polarization column vector CPI  has only one nonzero element and takes
the values T]0    0  0[ I  and ,]0 0  0[ TI  respectively (see Eq. (2.6.10)).

The polarization ellipse, along with a designation of the rotation direction (right-
or left-handed), fully describes the temporal evolution of the real electric field vector
at a fixed point in space. This evolution can also be visualized by plotting the curve in

) , ,( tϕθ  coordinates described by the tip of the electric field vector as a function of
time. For example, in the case of an elliptically polarized plane wave with right-
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handed polarization the curve is a right-handed helix with an elliptical projection onto
the plane-θϕ centered around the t-axis (see Fig. 2.7.2(a)). The pitch of the helix is
simply ,2 ωπ  where ω  is the angular frequency of the wave.

Another way to visualize a plane wave is to fix a moment in time and draw a
three-dimensional curve in ),,( sϕθ  coordinates described by the tip of the electric
field vector as a function of a spatial coordinate rn ⋅= ˆ  s  oriented along the direction
of propagation .n̂  According to Eqs. (2.7.8)–(2.7.11), the electric field is the same for
all position–time combinations with constant .tks ω−  Therefore, at any instant of
time (say, t = 0) the locus of the points described by the tip of the electric field vector
originating at different points on the s axis is also a helix, with the same projection
onto the plane-θϕ as the respective helix in the ),,( tϕθ  coordinates but with

(a)

(b)

(c)

t

s

s

 

 

  

n̂

n̂ ζ

θ

ϕ

θ

θ

ϕ

ϕ

ωπ2

λ

Figure 2.7.2.  (a) The helix described by the tip of the real electric field vector of a plane
electromagnetic wave with right-handed polarization in the ) , ,( tϕθ  coordinates at a fixed
point in space.  (b) As in (a), but in the ) , ,( sϕθ  coordinates at a fixed moment in time.
(c) As in (b), but for a linearly polarized wave.
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opposite handedness. For example, for the wave with right-handed elliptical polariza-
tion shown in Fig. 2.7.2(a), the respective curve in the ),,( sϕθ  coordinates is a left-
handed elliptical helix, shown in Fig. 2.7.2(b). The pitch of this helix is the wave-
length .λ  It is now clear that the propagation of the wave in time and space can be
represented by progressive movement in time of the helix shown in Fig. 2.7.2(b) in
the direction of n̂  with the speed of light. With increasing time, the intersection of the
helix with any plane s = constant describes a right-handed vibration ellipse.

In the case of a circularly polarized wave, the elliptical helix becomes a helix with
a circular projection onto the plane.-θϕ If the wave is linearly polarized, then the
helix degenerates into a simple sinusoidal curve in the plane making an angle ζ  with
the axis-ϕ (Fig. 2.7.2(c)).

2.8 Rotation transformation rule for the Stokes
parameters

The Stokes parameters of a plane electromagnetic wave are always defined with re-
spect to a reference plane containing the direction of wave propagation. If the refer-
ence plane is rotated about the direction of propagation then the Stokes parameters are
modified according to a rotation transformation rule, which can be derived as follows.
Consider a rotation of the coordinate axes θ  and ϕ  through an angle πη 2       0 <≤  in
the clockwise direction when looking in the direction of propagation (Fig. 2.8.1). The
transformation rule for rotation of a two-dimensional coordinate system yields

,sincos    000 ηη ϕθθ EEE +=′    (2.8.1)

,cossin    000 ηη ϕθϕ EEE +−=′    (2.8.2)

where the primes denote the electric-field vector components with respect to the new

′

′

η

n̂

O
η

ϕ̂

ϕ̂

θ̂θ̂

Figure 2.8.1.  Rotation of the -θ  and axes-ϕ through an angle 0    ≥η  around n̂  in the
clockwise direction when looking in the direction of propagation.
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reference frame. It then follows from Eq. (2.6.4) that the rotation transformation rule
for the Stokes column vector is

,)(    ILI η=′    (2.8.3)

where

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
=

1000
02cos2sin0
02sin2cos0
0001

    )(
ηη
ηη

ηL    (2.8.4)

is the so-called Stokes rotation matrix for angle .η  It is obvious that a πη     =  rota-
tion does not change the Stokes parameters.

Because

,)(    )(        )( MS1MS IBLBILBIBI −==′=′ ηη     (2.8.5)

the rotation matrix for the modified Stokes column vector is given by
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Similarly, for the circular-polarization representation,

,)(    )(        )( CP1CP IALAILAIAI −==′=′ ηη    (2.8.7)

and the corresponding rotation matrix is diagonal:
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(Hovenier and van der Mee, 1983).

2.9 Quasi-monochromatic light

The definition of a monochromatic plane electromagnetic wave given by Eqs. (2.5.4)
and (2.5.5) implies that the complex amplitudes 0E  and 0H  are constant. In reality,
both amplitudes often fluctuate in time, albeit much more slowly than the time-
harmonic factor ).iexp( tω−  The fluctuations of the complex amplitudes include, in
general, fluctuations of both the amplitude and the phase of the real electric and mag-
netic field vectors.
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It is straightforward to verify that the electromagnetic field given by

),i  iexp()(    ) ,( 0 ttt ω−⋅= rkErE    (2.9.1)

)i  iexp()(    ) ,( 0 ttt ω−⋅= rkHrH    (2.9.2)

still satisfies the Maxwell equations (2.1.1)–(2.1.4) at any moment in time provided
that the medium is homogeneous and source-free and that

,0    )(0 =⋅ tEk         (2.9.3)

,0    )(0 =⋅ tHk    (2.9.4)

),(µ    )( 00 tt HEk ω=×    (2.9.5)

),(    )( 00 tt EHk εω−=×    (2.9.6)

t
t

∂
∂ )(0E  � |,)(| 0 tEω    (2.9.7)

t
t

∂
∂ )(0H  � .|)(| 0 tHω    (2.9.8)

Equations (2.9.1)–(2.9.8) collectively define a parallel quasi-monochromatic beam of
light. The latter can be thought of as a superposition of a large number of monochro-
matic plane electromagnetic waves which propagate in the same direction and are
randomly distributed over a range of angular frequencies ]∆,∆[ ωωωω +−  such
that

ω
ω∆ � 1 (2.9.9)

(see, e.g., Subsection 7.3.3 of Born and Wolf, 1999).
Although the typical frequency of the fluctuations of the complex electric and

magnetic field amplitudes is much smaller than the angular frequency ,ω  it is still so
high that most optical instruments are incapable of tracing the instantaneous values of
the Stokes parameters but rather respond to an average of the Stokes parameters over
a relatively long period of time. Therefore, the definition of the Stokes parameters for
a quasi-monochromatic beam of light propagating in a homogeneous nonabsorbing
medium must be modified as follows:

},)]([)()]([)({ 
2
1    0000 tt tEtEtEtEI ��+��= ∗∗

ϕϕθθµ
�     (2.9.10)

},)]([)()]([)({ 
2
1    0000 tt tEtEtEtEQ ��−��= ∗∗

ϕϕθθµ
�     (2.9.11)

},)]([)()]([)({ 
2
1     0000 tt tEtEtEtEU ��+��−= ∗∗

θϕϕθµ
�     (2.9.12)

},)]([)()]([)({ 
2
1i    0000 tt tEtEtEtEV ��−��= ∗∗

ϕθθϕµ
�     (2.9.13)
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where

)(d  1    )(
  

  
tft

T
tf

Tt

t
t ′′=��

+

          (2.9.14)

denotes the average over a time interval T long compared with the typical period of
fluctuation.

Equations (2.9.10)–(2.9.14) illustrate the usefulness of the concept of quasi-
monochromatic light. Indeed, quasi-monochromatic light can be considered as mono-
chromatic over time intervals long compared with the period of time-harmonic oscil-
lations, ,2 ωπ  but short compared with the typical period of fluctuation. Therefore,
the corresponding electric and magnetic field vectors at any moment in time can still
be found by solving the time-harmonic Maxwell equations. Any observable charac-
teristic of the quasi-monochromatic light can then be found by assuming that the cor-
responding monochromatic characteristic is “slowly varying” and averaging it over a
sufficiently long time interval.
 The Stokes identity (2.6.8) is not valid, in general, for a quasi-monochromatic
beam. Indeed, now we have
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thereby yielding
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.    2222 VUQI ++≥           (2.9.16)

The equality holds only if the ratio )()( tata ϕθ  of the real amplitudes and the phase
difference )(t∆  are independent of time, which means that )(0 tE θ  and )(0 tE ϕ  are
completely correlated.  In this case the beam is said to be fully (or completely) polar-
ized. This definition includes a monochromatic plane wave, but is, of course, more
general. However, if ),(taθ  ),(taϕ  ),(tθ∆  and )(tϕ∆  are totally uncorrelated and

tt aa ��=�� 22     ϕθ  then Q = U = V = 0, and the quasi-monochromatic beam of light is
said to be unpolarized (or natural).

One way to visualize quasi-monochromatic light is to assume that Eqs. (2.9.1) and
(2.9.2) describe an instantaneous polarization ellipse with ellipticity, handedness, ori-
entation, and size fluctuating in time. This means that for unpolarized light, the pa-
rameters of the vibration ellipse traced by the endpoint of the electric field vector
fluctuate in such a way that there is no preferred vibration ellipse. For a completely
polarized beam, the ellipticity, handedness, and orientation of the ellipse remain con-
stant, and only the size of the ellipse may change in time. In all other cases, the quasi-
monochromatic beam is partially polarized with certain “amounts of preference” for
ellipticity, handedness, and orientation; these amounts of preference are not equal to
100% for all of the three ellipse parameters.

Thus, quasi-monochromatic light can be partially polarized and even completely
unpolarized, whereas a plane electromagnetic wave is always fully polarized. The
realization of this fact was the main motivation for the introduction of the Stokes pa-
rameters as descriptors of the polarization state of a light beam (Stokes, 1852).

When two or more quasi-monochromatic beams propagating in the same direction
are mixed incoherently, which means that there is no permanent phase relation be-
tween the separate beams, then the Stokes column vector of the mixture is equal to the
sum of the Stokes column vectors of the individual beams:

,    n

n

II =           (2.9.17)

where n numbers the beams. Indeed, inserting Eqs. (2.7.1) and (2.7.2) in Eq. (2.9.10),
we obtain for the total intensity

)](iexp[ 
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aaI θθθθ ∆∆
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−�= �

  tmnmnaa �−+ )](iexp[ ϕϕϕϕ ∆∆

    )](iexp[    
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1  mnmn
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aaI θθθθ ∆∆
µ

−�+=
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  .)](iexp[  tmnmnaa �−+ ϕϕϕϕ ∆∆      (2.9.18)

Since the phases of different beams are uncorrelated, the second term on the right-
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hand side of the relation above vanishes.  Hence

,    n

n

II =           (2.9.19)

and similarly for Q, U, and V. Of course, this additivity rule also applies to the coher-
ency matrix ,ρ  the modified Stokes column vector ,MSI  and the circular-polarization
column vector .CPI

The additivity of the Stokes parameters allows us to generalize the principle of
optical equivalence (Section 2.6) to quasi-monochromatic light as follows: it is im-
possible by means of a traditional optical instrument to distinguish between various
incoherent mixtures of quasi-monochromatic beams that form a beam with the same
Stokes parameters )., , ,( VUQI  For example, there is only one kind of unpolarized
light, although it can be composed of quasi-monochromatic beams in an infinite vari-
ety of optically indistinguishable ways.

According to Eqs. (2.9.16) and (2.9.17), it is always possible mathematically to
decompose any quasi-monochromatic beam into two incoherent parts, one unpolar-
ized, with a Stokes column vector

,0]   0   0           [ T222 VUQI ++−

and one fully polarized, with a Stokes column vector

.]             [ T222 VUQVUQ ++

Thus, the intensity of the fully polarized component is ,)    ( 21222 VUQ ++  so that the
degree of (elliptical) polarization of the quasi-monochromatic beam is

.
    

    
222

I
VUQ

P
++

=           (2.9.20)

The degree of linear polarization is defined as

I
UQ

P
22

L
  

    
+

=           (2.9.21)

and the degree of circular polarization as

.    C IVP =           (2.9.22)

P vanishes for unpolarized light and is equal to unity for fully polarized light. For a
partially polarized beam )1     0( << P  with ,0≠V  the sign of V indicates the prefer-
ential handedness of the vibration ellipses described by the endpoint of the electric
field vector. Specifically, a positive V indicates left-handed polarization and a nega-
tive V indicates right-handed polarization. By analogy with Eqs. (2.7.28) and (2.7.29),
the quantities QU−  and 2122 )(|| UQV +  can be interpreted as specifying the pref-
erential orientation and ellipticity of the vibration ellipse. Unlike the Stokes parame-
ters, these quantities are not additive. According to Eqs. (2.8.3) and (2.8.4), P, ,LP
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and CP  are invariant with respect to rotations of the reference frame around the di-
rection of propagation.

When U = 0, the ratio

IQPQ      −=          (2.9.23)

is also called the degree of linear polarization (or the signed degree of linear polariza-
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Figure 2.9.1.  Analysis of a quasi-monochromatic beam with Stokes parameters I, Q, U, and V.
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tion). QP  is positive when the vibrations of the electric field vector in the
direction-ϕ (i.e., the direction perpendicular to the meridional plane of the beam)

dominate those in the direction-θ and is negative otherwise.
The standard polarimetric analysis of a general quasi-monochromatic beam with

Stokes parameters I, Q, U, and V is summarized in Fig. 2.9.1 (after Hovenier et al.,
2004).

2.10 Measurement of the Stokes parameters

Most detectors of electromagnetic radiation, especially those in the visible and infra-
red spectral range, are insensitive to the polarization state of the beam impinging on
the detector surface and can measure only the first Stokes parameter of the beam, viz.,
the intensity. Therefore, to measure the entire Stokes column vector of the beam, one
has to insert between the source of light and the detector one or several optical ele-
ments that modify the beam so that the new first Stokes parameter of the radiation
reaching the detector now contains information about the second, third, and fourth
Stokes parameters of the original beam. This is usually done with so-called polarizers
and retarders, and typically entails a succession of several such measurements to fully
characterize the Stokes column vector.

A polarizer is an optical element that attenuates the orthogonal components of the
electric field vector of an electromagnetic wave unevenly. Let us denote the corre-
sponding attenuation coefficients as θp  and ϕp  and consider first the situation when
the two orthogonal transmission axes of a polarizer coincide with the -θ  and axes-ϕ
of the laboratory coordinate system (see Fig. 2.10.1). This means that after the elec-
tromagnetic wave goes through the polarizer, the orthogonal components of the elec-
tric field change as follows:

,1        0      ,    ≤≤=′ θθθθ pEpE           (2.10.1)

.1        0      ,    ≤≤=′ ϕϕϕϕ pEpE           (2.10.2)

It then follows from the definition of the Stokes parameters, Eq. (2.6.4), that the
Stokes column vector of the wave modifies according to

,   IP I =′           (2.10.3)

where
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is the so-called Mueller matrix representing the effect of the polarizer.
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An important example of a polarizer is a neutral filter with ,ppp == ϕθ  which
equally attenuates the orthogonal components of the electric field vector and does not
change the polarization state of the wave:

.
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= pP           (2.10.5)

In contrast, an ideal linear polarizer transmits only one orthogonal component of the
wave (say, the component)-θ and completely blocks the other one :)0  ( =ϕp
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An ideal perfect linear polarizer does not change one orthogonal component )1  ( =θp
and completely blocks the other one :)0  ( =ϕp
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If the transmission axes of a polarizer are rotated relative to the laboratory co-

n̂

θp

ϕp

Polarizerϕ

θ

θ

ϕ

Figure 2.10.1.  The transmission axes of the polarizer coincide with those of the laboratory
reference frame.
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ordinate system (Fig. 2.10.2) then its Mueller matrix with respect to the laboratory
coordinate system also changes. To obtain the resulting Stokes column vector with
respect to the laboratory coordinate system, we need to:

● “Rotate” the initial Stokes column vector through the angle η  in the clock-
wise direction in order to obtain the Stokes parameters of the original beam
with respect to the polarizer axes.

● Multiply the “rotated” Stokes column vector by the original (nonrotated) po-
larizer Mueller matrix.

● “Rotate” the Stokes column vector thus obtained through the angle η−  in or-
der to calculate the Stokes parameters of the resulting beam with respect to
the laboratory coordinate system.

The final result is as follows:

.)()(   ILPL I ηη−=′           (2.10.8)

Hence the Mueller matrix of the rotated polarizer computed with respect to the labo-
ratory coordinate system is given by

)()(   )( ηηη LPL P −=           (2.10.9)

with .   )0( P P =
A retarder is an optical element that changes the phase of the beam by causing a

phase shift of 2ζ+  along the axis-θ and a phase shift of 2ζ−  along the axis-ϕ
(Fig. 2.10.3). We thus have

,)2iexp(    θθ ζ EE +=′             (2.10.10)
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ϕ

θ

θ

ϕ

θ

ϕ

Figure 2.10.2.  The polarizer transmission axes are rotated through an angle 0    ≥η  around n̂
in the clockwise direction when looking in the direction of propagation.
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,)2iexp(    ϕϕ ζ EE −=′             (2.10.11)

which yields

,)(   IR I ζ=′             (2.10.12)

where

 

cossin00
sincos00

0010
0001

    )(

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−

=

ζζ
ζζ

ζR             (2.10.13)

is the Mueller matrix of the retarder.
Consider now the optical path shown in Fig. 2.10.4. The beam of light goes

through a retarder and a rotated ideal perfect linear polarizer and then impinges on the
surface of a polarization-insensitive detector. The Stokes column vector of the result-
ing beam impinging on the detector surface is given by

,)()(   IRP I ζη=′           (2.10.14)
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(cf. Eqs. (2.10.7) and (2.10.9)). Hence the intensity of the resulting beam as a function
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θ
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ϕ

Figure 2.10.3.  Propagation of a beam through a retarder.
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of η  and ζ  is given by

).sin2sincos2sin2cos(    ) ,( 2
1 ζηζηηζη VUQII −−+=′   (2.10.16)

This formula suggests a simple way to determine the Stokes parameters of the origi-
nal beam by measuring the intensity of the resulting beam using four different combi-
nations of η  and :ζ

),0 ,90()0 ,0(    °°′+°°′= III           (2.10.17)

),0 ,90()0 ,0(    °°′−°°′= IIQ           (2.10.18)

,)0 ,45(2     IIU +°°′−=           (2.10.19)

).09 ,45(2    °°′−= IIV       (2.10.20)

Other methods for measuring the Stokes parameters and practical aspects of pola-
rimetry are discussed in detail in the books by Shurcliff (1962), Clarke and Grainger
(1971), Azzam and Bashara (1977), Kliger et al. (1990), and Collett (1992).

2.11 Spherical-wave solution

As we have seen, plane electromagnetic waves represent a fundamental solution of
the Maxwell equations underlying the concept of a monochromatic parallel beam of
light. Another fundamental solution representing the outward propagation of electro-

η

n̂

2ζ+

2ζ−

Retarder

plane
Detector

beam
Incident

polarizer
Linear

ϕ

ϕ

ϕ

ϕp

θ

θ

θ

θp

Figure 2.10.4.  Measurement of the Stokes parameters with a retarder and an ideal perfect
linear polarizer rotated with respect to the laboratory reference frame.
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magnetic energy from a point-like source is a transverse spherical wave. To derive
this solution, we need Eqs. (2.3.3), (2.3.4), (2.3.11), (2.3.16), (2.3.17), (2.5.1), and
(2.5.2) as well as the following formulas:
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where ||ˆ rrr =  is the unit vector in the direction of the position vector r. It is then
straightforward to verify that the complex field vectors

),i exp()ˆ( )iexp(    ) ,( 1 t
r

krt ω−= rErE           (2.11.4)

)i exp()ˆ( )iexp(    ) ,( 1 t
r

krt ω−= rHrH           (2.11.5)

are a solution of the Maxwell equations in the limit →kr ∞ provided that the medium
is homogeneous and that

,0    )ˆ(ˆ 1 =⋅ rEr           (2.11.6)

,0    )ˆ(ˆ 1 =⋅ rHr           (2.11.7)

),ˆ(µ    )ˆ(ˆ 11 rHrEr ω=×k           (2.11.8)

),ˆ(    )ˆ(ˆ 11 rErHr εω−=×k           (2.11.9)

where the wave number ckkk mωεω     µ)(    i    21
IR ==+=  may be complex and the

)ˆ(1 rE  and )ˆ(1 rH  are independent of the distance r from the origin.
Equations (2.11.4)–(2.11.9) describe an outgoing transverse spherical wave

propagating radially with the phase velocity R  kω=v  and having mutually perpen-
dicular complex electric and magnetic field vectors. The wave is homogeneous in that
the real and imaginary parts of the local complex wave vector r̂k  are parallel. The
surfaces of constant phase coincide with the surfaces of constant amplitude and are
spherical. It is obvious that

),,(ˆ 
µ

    ),( tkt rErrH ×=
ω

          (2.11.10)

which allows one to consider the spherical wave in terms of the electric (or the mag-
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netic) field only. The time-averaged Poynting vector of the wave is given by
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where, as before, .    II ωck=m  Thus, the local direction of the electromagnetic en-
ergy flow is away from the origin. The intensity of the spherical wave is defined as
the absolute value of the time-averaged Poynting vector,
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The intensity has the dimension of monochromatic energy flux and specifies the
amount of electromagnetic energy crossing a unit surface element normal to r̂  per
unit time. The intensity is attenuated exponentially by absorption and in addition de-
creases as the inverse square of the distance from the origin.

In the case of a medium with no dispersion and losses, the real electric and mag-
netic field vectors are mutually orthogonal and are normal to the direction of propa-
gation r̂  (Fig. 2.11.1). The energy conservation law takes the form
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  r
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Surface of constant phase
and constant amplitude

H

Figure 2.11.1.  Spherical electromagnetic wave propagating in a homogeneous medium with
no dispersion and losses.
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where S is the sphere of radius r and

ϕθθ ddsin    d    ˆd 2 ==
r
Sr           (2.11.14)

is a differential solid angle element around the direction r̂  (see Fig. 2.11.2). It is also
easy to show that in the case of a nonabsorbing medium, the time-averaged energy
density of a spherical wave is given by
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r
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Equations (2.11.12) and (2.11.15) show that

,) ,(    )( ttI ��= rr Uv   (2.11.16)

where =  v  21)(1 µ�  is the speed of light in the material medium. The same result
was obtained previously for a plane wave propagating in a nonabsorbing medium (cf.
Eq. (2.5.30)).

In complete analogy with the case of a plane wave, the coherency matrix, the co-
herency column vector, and the Stokes column vector of a spherical wave propagating
in a homogeneous medium with no dispersion and losses can be defined as
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Figure 2.11.2.  Differential solid angle in polar spherical coordinates.
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respectively. All these quantities have the dimension of monochromatic energy flux.
As before, the first Stokes parameter is the intensity (defined this time by Eq.
(2.11.12)).

The reader is invited to verify that the complex field vectors

),i exp()ˆ( )iexp(    ) ,( 1 t
r

krt ω−−= rErE             (2.11.20)

)i exp()ˆ( )iexp(    ) ,( 1 t
r

krt ω−−= rHrH             (2.11.21)

represent yet another solution of the Maxwell equations in the limit →kr ∞ provided
that the medium is homogeneous and that

,0    )ˆ(ˆ 1 =⋅ rEr             (2.11.22)

,0    )ˆ(ˆ 1 =⋅ rHr             (2.11.23)

),ˆ(µ    )ˆ(ˆ 11 rHrEr ω−=×k             (2.11.24)

).ˆ(    )ˆ(ˆ 11 rErHr εω=×k             (2.11.25)

These formulas describe an incoming transverse spherical wave with mutually per-
pendicular complex electric and magnetic field vectors. The spherical surfaces of con-
stant phase and constant amplitude and the electromagnetic energy propagate radially
in the direction of the local unit vector .r̂−

2.12 Coherency dyad of the electric field

The definition of the coherency and Stokes column vectors explicitly exploits the
transverse character of an electromagnetic wave and requires the use of a local
spherical coordinate system. However, in some cases it is convenient to introduce an
alternative quantity that also provides a complete optical specification of a transverse
electromagnetic wave but is defined without explicit use of a coordinate system. One
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such quantity is called the coherency dyad and, in the general case of an arbitrary
electromagnetic field, is given by

,)] ,([) ,(    ) ,( ∗⊗= ttt rErErρ�             (2.12.1)

where ⊗  denotes the dyadic product of two vectors (see Appendix A for a discussion
of dyads and dyadics). It is then clear that the coherency and Stokes column vectors
of a transverse time-harmonic electromagnetic wave propagating in the direction n̂
through a homogeneous medium with no dispersion and losses can be expressed in
terms of the coherency dyad as follows:
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whereas the products n̂⋅ρ�  and ρ�⋅n̂  vanish. It follows from the definition of the
coherency dyad that it is Hermitian:

, T ∗= ρρ ��           (2.12.4)

where T denotes the transpose of a dyad(ic).
The coherency dyad is a more general quantity than the coherency and Stokes

column vectors because it can be applied to any electromagnetic field and not just to a
transverse electromagnetic wave. The simplest example of a situation in which the
coherency dyad can be introduced, whereas the Stokes column vector cannot, in-
volves the superposition of two plane electromagnetic waves propagating in different
directions. The more general nature of the coherency dyad makes it very convenient
in studies of random electromagnetic fields created by large stochastic groups of
scatterers. For example, the additivity of the Stokes parameters (see Section 2.9) is a
concept that can be applied only to transverse waves propagating in exactly the same
direction, whereas a statistical average of the coherency dyad of a random electro-
magnetic field at an observation point can sometimes be reduced to an incoherent sum
of coherency dyads of transverse waves propagating in various directions (see Section
8.6).

It is important to remember, however, that when the coherency dyad is applied to
an arbitrary electromagnetic field, it may not always have as definite a physical
meaning as, for example, the Poynting vector. The relationship between the coher-
ency dyad and the actual physical observables may change depending on the problem
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in hand and must be established carefully whenever this quantity is used in a theoreti-
cal analysis of a specific measurement procedure. For example, the right-hand sides
of Eqs. (2.12.2) and (2.12.3) may become rather meaningless if the products n̂⋅ρ�  and

ρ�⋅n̂  do not vanish.

2.13 Historical notes and further reading

The equations of classical electromagnetics were written originally by Maxwell in
Cartesian component form (Maxwell, 1891) and were cast in the modern vector form
by Oliver Heaviside (1850–1925). The subsequent experimental verification of Max-
well’s theory by Heinrich Rudolf Hertz (1857–94) made it a well-established disci-
pline. Since then classical electromagnetics has been a cornerstone of physics and has
played a critical role in the development of a great variety of scientific, engineering,
and biomedical disciplines. The fundamental nature of Maxwell’s electromagnetics
was ultimately asserted by the development of the relativity theory by Jules Henri
Poincaré (1854–1912) and Hendrik Antoon Lorentz (1853–1928) (Whittaker, 1987).

The two-volume monograph by Sir Edmund Whittaker referenced above remains
by far the most complete and balanced account of the history of electromagnetism
from the time of William Gilbert (1544–1603) and René Descartes (1596–1650) to
the relativity theory. This magnificent work should be read by everyone interested in
a masterful and meticulously documented recreation of the actual sequence of events
and publications that shaped the physical science.

Comprehensive modern accounts of classical electromagnetics and optics can be
found in the monographs by Stratton (1941), Jackson (1998), Born and Wolf (1999),
and Kong (2000).

Sir George Gabriel Stokes (1819–1903) was the first to discover that four quanti-
ties, now known as the Stokes parameters, could conveniently characterize the polari-
zation state of any light beam, including partially polarized and unpolarized light
(Stokes, 1852). Furthermore, he noted that unlike the quantities entering the ampli-
tude formulation of the optical field, these parameters could be directly measured by a
suitable optical instrument.

The fascinating subject of polarization attracted the attention of many other great
scientists before and after Stokes, including Augustin Jean Fresnel (1788–1827), Do-
minique François Arago (1786–1853), Thomas Young (1773–1829),  Subrahmanyan
Chandrasekhar (1910–95), and Hendrik van de Hulst (1918–2000). Even Poincaré,
who is rightfully considered to be one the greatest geniuses of all time, had found the
time to contribute to this discipline by developing a useful polarization analysis tool
known as the Poincaré sphere (Poincaré, 1892; see also Kliger et al., 1990 and
Collett, 1992).

Extensive treatments of theoretical and experimental aspects of polarimetry have
been provided by Shurcliff (1962), Kliger et al. (1990), Collett (1992), Brosseau
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(1998), and Hovenier et al. (2004). In Pye (2001), numerous manifestations of polari-
zation in science and nature are described.
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Chapter 3

Basic theory of electromagnetic scattering

Although the main subject of this book is multiple scattering of light by groups of
randomly positioned particles, many quantities used in the derivation of the radiative
transfer equation and finally entering it originate in the electromagnetic theory of sin-
gle scattering by a fixed object. Therefore, we will introduce in this chapter the rele-
vant single-scattering concepts and definitions and summarize the theoretical results
that will be necessary for understanding the material presented in the following chap-
ters.

As we have indicated in Chapter 1, the presence of an object with a refractive in-
dex different from that of the surrounding medium changes the electromagnetic field
that would otherwise exist in an unbounded homogeneous space. The difference of
the total field in the presence of the object and the original field that would exist in
the absence of the object can be thought of as the field scattered by the object. In
other words, the total field is the vector sum of the incident (original) field and the
scattered field.

The specific angular distribution and polarization state of the scattered field de-
pend on the polarization and directional characteristics and wavelength of the incident
field as well as on such properties of the scatterer as its size, shape, relative refractive
index, and orientation. However, the principal objective of this chapter is to consider
the general mathematical description of the scattering process without making de-
tailed assumptions about the scattering object except that it is composed of a linear
and isotropic material. As always, we begin with a field description of the scattering
process and then proceed by introducing quantities that can be directly measured with
a suitable optical instrument.

An important part of this chapter is the application of the concept of the coherency
dyad of the total electric field. Although this quantity may not have as definite a
physical meaning as, for example, the Poynting vector, it proves to be an essential
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instrument in the solution of various electromagnetic scattering problems including
the microphysical derivation of the RTE.

3.1 Volume integral equation and Lippmann–Schwinger
equation

Consider a fixed scattering object embedded in an infinite, homogeneous, linear, iso-
tropic, and nonabsorbing medium (see Fig. 3.1.1). The scatterer occupies a finite inte-
rior region INTV  and is surrounded by the infinite exterior region EXTV  such that

,    3
EXTINT ℜ=∪VV  where, as before, 3ℜ  denotes the entire three-dimensional space.

The interior region is filled with an isotropic, linear, and possibly inhomogeneous
material. The scatterer can be either a single body or a cluster with touching and/or
separated components. Point O serves as the common origin of all position vectors
and as the origin of the laboratory coordinate system.

It is well known that optical properties of bulk substances in solid or liquid phases
are qualitatively different from those of their constituent atoms and molecules when
the latter are isolated. This may cause a problem when one applies the concept of bulk

O

Scattered spherical wave

Incident wave

Figure 3.1.1.  Schematic representation of the electromagnetic scattering problem. The
unshaded exterior region EXTV  is unbounded in all directions, whereas the shaded areas
collectively represent the interior region .INTV
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optical constants to a very small particle because either the optical constants deter-
mined for bulk matter provide an inaccurate estimate or the particle is so small that
the entire concept of optical constants loses its validity. We will therefore assume that
the individual bodies forming the scattering object are sufficiently large so that they
can still be characterized by optical constants appropriate to bulk matter. According to
Huffman (1988), this implies that each body is larger than approximately 50 Å.

The frequency-domain monochromatic Maxwell curl equations (2.3.3) and
(2.3.17) describing the scattering problem can be rewritten as follows:
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where the subscripts 1 and 2 refer to the exterior and interior regions, respectively.
The permeability and the complex permittivity for the interior region are functions of
r to provide for the general case of the scattering object being inhomogeneous. Since
the first relations in Eqs. (3.1.1) and (3.1.2) yield the magnetic field provided that the
electric field is known everywhere, we will look for the solution of Eqs. (3.1.1) and
(3.1.2) in terms of only the electric field.

Assuming that the host medium and the scattering object are nonmagnetic, i.e.,
,        ) ,(µ 012 µµω =≡r  where 0µ  is the permeability of a vacuum, we derive the fol-

lowing vector wave equations:
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where 21
011 )(     µω �=k  and 21

022 ]) ,([     ) ,( µωεωω rr =k  are the wave numbers of
the exterior and interior regions, respectively. Equations (3.1.3) and (3.1.4) can then
be rewritten as a single inhomogeneous differential equation
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and ) ,( ωrm  is the refractive index of the interior relative to that of the exterior. From
this point on, we will omit the argument ω  for the sake of brevity, while still remem-
bering that the relative refractive index may be frequency-dependent. It follows from
Eq. (3.1.6) that the forcing function )(rj  vanishes everywhere outside the interior
region.
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Any solution of an inhomogeneous linear differential equation can be divided into
two parts: (i) a solution of the respective homogeneous equation with the right-hand
side identically equal to zero and (ii) a particular solution of the inhomogeneous
equation. The first part satisfies the equation
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inc ℜ∈=−×∇×∇ rrErE k    (3.1.8)

and describes the field that would exist in the absence of the scattering object, i.e., the
incident field. The physically appropriate particular solution of Eq. (3.1.5) must give
the scattered field )(sca rE  generated by the forcing function ).(rj  Obviously, of all
possible particular solutions of Eq. (3.1.5), we must choose the one that vanishes at
large distances from the scattering object and ensures energy conservation.

To find ),(sca rE  we first introduce the free space dyadic Green’s function
) ,( rr ′G
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 as a dyadic satisfying the differential equation
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is the three-dimensional delta function, and )(δ xx ′−  is the usual Dirac delta func-
tion. Taking into account that

),()] ,([    )]() ,([ rjrrrjrr ′⋅′×∇=′⋅′×∇ GG
��

    (3.1.11)

we get

).(δ)(    )]() ,([)]() ,([ 2
1 rrrjrjrrrjrr ′−′⋅=′⋅′−′⋅′×∇×∇ IGkG

���

    (3.1.12)

We integrate both sides of this equation over the entire space to obtain
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where the infinitesimal volume element is given by zyx ′′′=′ ddd  dr  in Cartesian co-
ordinates and by ddsind    d 2 ϕθθ ′′′′′=′ rrr in spherical polar coordinates. Compari-
son with Eq. (3.1.5) now shows that
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where we have taken into account that j(r) vanishes everywhere outside .INTV  We
will see in the following section that this particular solution of Eq. (3.1.5) indeed
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vanishes at infinity and ensures energy conservation, thereby being the physically
appropriate particular solution. Hence, the complete solution of Eq. (3.1.5) is
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To find the free space dyadic Green’s function, we first express it in terms of a
scalar Green’s function ),( rr ′g  as follows:

). ,(1    ) ,( 2
1

rrrr ′��
�

�
��
�

�
∇⊗∇+=′ g

k
IG
��

    (3.1.16)

Inserting Eq. (3.1.16) into Eq. (3.1.9) and noticing that
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where 0
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 is a zero dyad, we obtain the following differential equation for g:
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The well-known solution of this equation, which satisfies the condition
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(e.g., Jackson, 1998, p. 427). Hence, Eqs. (3.1.6), (3.1.7), (3.1.15), (3.1.16), and
(3.1.20) finally yield (Saxon, 1955b; Shifrin, 1968)
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The scattered electric field is then given by
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Equation (3.1.21) is a volume integral equation expressing the total electric field
everywhere in space in terms of the incident field and the total field inside the scat-
terer. Since the latter is not known in general, one must solve Eq. (3.1.21) either nu-
merically or analytically. As a first step, the internal field can be approximated by the
incident field. This is the gist of the so-called Rayleigh–Gans approximation (RGA)
otherwise known as the Rayleigh–Debye or Born approximation (van de Hulst, 1957;
Ishimaru, 1978). The total field computed in the RGA can be substituted in the inte-
gral on the right-hand side of Eq. (3.1.21) in order to compute an improved approxi-
mation, and this iterative process can be continued until the total field converges
within a given numerical accuracy. Although this procedure can be rather involved, it
shows that in the final analysis the scattered electric field can be expressed in terms of
the incident field as follows:
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where T
�

 is the so-called dyadic transition operator (Tsang et al., 1985). Substituting
Eq. (3.1.23) in Eq. (3.1.21) yields the following integral equation for :T
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Equations of this type appear in the quantum theory of scattering and are called
Lippmann–Schwinger equations (Lippmann and Schwinger, 1950; Newton, 1982).

Equation (3.1.23) shows that if )(inc
1 rE  and )(inc

2 rE  are two different incident
fields and )(sca

1 rE  and )(sca
2 rE  are the corresponding scattered fields, then )(sca

1 rE +
)(sca

2 rE  is the scattered field corresponding to the incident field ).(    )( inc
2

inc
1 rErE +

This result is, of course, a consequence of the principle of superposition discussed in
Section 2.3.

3.2 Scattering in the far-field zone

Let us now subdivide the scattering object into a large number of elementary volume
elements V∆  and rewrite Eq. (3.1.22) for an external observation point r in the dis-
crete form:
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where the index i numbers the volume elements, iE  and im  are the electric field and
relative refractive index values, respectively, at the center of the ith volume element,

|| ii ρ=ρ  is the distance from the center of the ith volume element to the observation
point, ii rrρ −=  is the vector connecting the center of the ith volume element and the
observation point, and ir  is the radius vector of the center of the ith volume element
(Fig. 3.2.1). Recall now that in spherical polar coordinates,

, 
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ϕ

φr =
∂
∂           (3.2.3)

where the order of operator components relative to ,r̂  ,θ̂  and φ̂  in Eq. (3.2.2) is es-
sential because the unit basis vectors depend on θ  and .ϕ  The simplicity of these
formulas makes it convenient to evaluate the contribution of each volume element to
the sum on the right-hand side of Eq. (3.2.1) by using a local coordinate system origi-
nating at the center of this volume element and having the same orientation as the
laboratory reference frame. This is done by making the substitution iρr →  for each
new i. Recalling Eqs. (2.5.1) and (2.11.1) and assuming that

ik ρ1 � 1  for any i    (3.2.4)

then yields

O

r

ir

i

V

Observation
point

Figure 3.2.1.  Derivation of Eq. (3.2.5).
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where iii ρρρ =ˆ  is the unit vector originating at the center of the ith volume ele-
ment and directed towards the observation point. Finally,
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where

.
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 ˆ
rr
rrρ
′−
′−=′ (3.2.7)

Equation (3.2.6) has two important implications. First, it shows that the scattered
field at an external observation point is a vector superposition of partial scattered
fields (wavelets) which are created by infinitesimal volume elements constituting the
interior of the object. Second, it demonstrates that each wavelet is an outgoing trans-
verse spherical wave (Fig. 3.2.2). Indeed, the identity dyadic in spherical polar coor-
dinates is given by Eq. (A.12), so that the dyadic factor

ρρ ′⊗′− ˆˆI
�

in Eq. (3.2.6) ensures that each wavelet is transverse, i.e., the electric field vector of
the wavelet at the observation point is perpendicular to its propagation direction :ρ̂′

.0)()ˆˆ  (ˆ =′⋅′⊗′−⋅′ rEρρρ I
�

           (3.2.8)

Furthermore, the electric field of the wavelet decays inversely with distance || rr ′−
from the center of the infinitesimal volume element.

Let us now assume that the origin of the laboratory coordinate system O is close
to the geometrical center of the scattering object (Figs. 3.1.1 and 3.2.3). Usually one
is interested in calculating the scattered field in the so-called far-field zone of the en-
tire object. Specifically, assuming that the distance r from the origin to the observa-
tion point is much larger than any linear dimension of the scatterer,
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where rrr =ˆ  is the unit vector in the direction of r, Fig. 3.2.3. The last two terms
on the right-hand side of Eq. (3.2.11) can be neglected in computing the slowly vary-
ing denominator in the expression on the right-hand side of Eq. (3.2.6), thereby
yielding

||
1

rr ′−
 ≈ ,1

r
    (3.2.12)

but not in computing the rapidly oscillating factor |).|exp(i 1 rr ′−k  Assuming, how-
ever, that

r
rk

2

2
1 ′ � 1  for any  INTV∈′r         (3.2.13)

we finally obtain
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This remarkable formula is the main result of the far-field approximation and
demonstrates that the scattered electric field at a large distance from the object be-
haves as a single outgoing transverse spherical wave centered at O and propagating in
the direction of the radial unit vector .r̂  Indeed, the scattered field decays inversely

Observation
point

i

j

Figure 3.2.2.  Spherical wavelets generated by infinitesimal volume elements centered at
points i  (broken line) and j (dot-dashed line).
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with distance r from the origin and

.0    )(ˆ sca =⋅ rEr           (3.2.15)

Thus, only the -θ  and components-ϕ of the electric vector of the scattered field are
nonzero. Equation (3.2.14) can be rewritten in the form

,0    )ˆ(ˆ         ,)ˆ( )exp(i    )( sca
1

sca
1

1sca =⋅= rErrErE
r

rk     (3.2.16)

where the vector )ˆ(sca
1 rE  is independent of r and describes the angular distribution of

the scattered radiation in the far-field zone.
Let a be the radius of the smallest circumscribing sphere of the scattering object

centered at O. Then the criteria (3.2.4), (3.2.9), and (3.2.13) of the far-field approxi-
mation can be summarized as follows:

)(1 ark − � 1,                   (3.2.17)

r � a      or      rk1 � ,1ak                  (3.2.18)
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Figure 3.2.3.  Scattering in the far-field zone of the entire object.
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The inequality (3.2.17) means that the distance from any point inside the object to
the observation point must be much greater than the wavelength. This ensures that at
the observation point, the partial field scattered by any differential volume element
develops into an outgoing spherical wavelet.

The inequality (3.2.18) requires the observation point to be located at a distance
from the object much greater than the object size. This ensures that when the partial
wavelets generated by the elementary volume elements constituting the object arrive
at the observation point, they propagate in essentially the same scattering direction,
Fig. 3.2.4, and are equally attenuated by the factor 1/distance:

|| rr
rr
′−
′−  ≈ r̂       and      

||
1

rr ′−
 ≈ 

r
1       for any . INTV∈′r     (3.2.20)

Observation
point

i

j
O

ˆi

ˆ
jr̂

ρ

ρ

Figure 3.2.4.  The individual spherical wavefronts generated by infinitesimal volume elements
centered at points i (broken curve) and  j (dot-dashed curve) nearly merge with increasing
distance of the observation point from the scattering object and become locally
indistinguishable from the unified spherical wavefront centered at the common origin (solid
curve). The respective propagation directions at the observation point also become close and
eventually coincide.
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The meaning of the inequality (3.2.19) is a bit more subtle, but becomes clear
from the inspection of Fig. 3.2.5, in which the observation point is shown relative to
the smallest circumscribing sphere of the object. The phase difference between the
straight path connecting the observation point and a point on the sphere surface and
the path connecting the observation point and the origin is given by

)(1 rrk −′  ≈ .cos
2 1

2
1 ςak

r
ak −      (3.2.21)

The second term on the right-hand side of this expression is independent of r (for a
fixed scattering direction), whereas the variation of the first term with changing r is
significant unless rak 22

1 � 1. Therefore, we can interpret the inequality (3.2.19) as
the requirement that the observation point be so far from the scatterer that the phase
difference between the paths connecting the observation point and any two points of
the scatterer becomes independent of r for any fixed scattering direction. As a conse-
quence, the surfaces of constant phase of the partial wavelets generated by the ele-
mentary volume elements constituting the object coincide locally when they reach an
observation point situated in the far-field zone, and the wavelets form a single outgo-
ing spherical wave (compare Figs. 3.2.2 and 3.2.4). This implies that the entire scat-
terer is effectively treated as a point-like body located at the origin of the laboratory
coordinate system.

The relative importance of the far-field-zone criteria (3.2.17)–(3.2.19) changes
with particle size relative to the wavelength. For particles much smaller than the

Observation
point

O
a

r
r′

ς

Figure 3.2.5.  Interpretation of the inequality (3.2.19).
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wavelength ak1( � ),1  the inequality (3.2.17) is the most restrictive of the three.
When the size parameter ak1  is of order unity, all three criteria are roughly equiva-
lent. For particles much greater than the wavelength ak1( � ),1  the inequality
(3.2.19) becomes the most demanding and can “move” the far-field zone much farther
from the particle than the other two inequalities.

In view of the inequality (3.2.18), the inequality (3.2.17) can be simplified:

rk1 � .1                    (3.2.22)

Furthermore, all three criteria of far-field scattering can be written as the following
single inequality:

rk1 � ),,1max( 2
2
1 x     (3.2.23)

where akx 1=  is the dimensionless so-called size parameter of the object.

3.3 Scattering dyadic and amplitude scattering matrix

Assuming that the incident field is a plane electromagnetic wave,
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and using Eq. (3.1.23), we have
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where rn ˆˆ sca =  (see Fig. 3.2.3) and A
�

 is the so-called scattering dyadic. It follows
from Eqs. (3.2.15) and (3.3.2) that

.    )ˆ ,ˆ(ˆ incscasca 0nnn =⋅ A
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         (3.3.3)

However, because the incident field given by Eq. (3.3.1) is a transverse wave with
electric field vector perpendicular to the direction of propagation, the dot product

incincsca ˆ)ˆ,ˆ( nnn ⋅A
�

 is not defined by Eq. (3.3.2). To complete the definition, we take

this product to be zero:
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Therefore, the final expression for the scattering dyadic in terms of the dyadic transi-
tion operator is as follows:
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The elements of the scattering dyadic have the dimension of length.
According to the above definition, the scattering dyadic describes far-field scat-

tering of a plane electromagnetic wave. Although this may appear to suggest that the
usefulness of this quantity is rather limited, its actual range of applicability is much
wider. Indeed, it follows directly from the principle of superposition that the scatter-
ing dyadic can be used to compute far-field scattering of any incident field as long as
the latter can be expanded in elementary plane waves.

Equations (3.3.3) and (3.3.4) show that only four out of the nine components of
the scattering dyadic are independent in the spherical polar coordinate system cen-
tered at the origin, Fig. 3.2.3. It is therefore convenient to introduce the 22×  so-
called amplitude scattering matrix S, which describes the transformation of the -θ
and components-ϕ of the incident plane wave into the -θ  and components-ϕ of the
scattered spherical wave:

,)ˆ ,ˆ( )exp(i    )ˆ( inc
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where E denotes a two-component column formed by the -θ  and components-ϕ of
the electric field vector:
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The elements of the amplitude scattering matrix have the dimension of length and are
expressed in terms of the scattering dyadic as follows:

,ˆˆ incsca
11 θθ ⋅⋅= AS

�

        (3.3.8)

,ˆˆ incsca
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             (3.3.9)

,ˆˆ incsca
21 θφ ⋅⋅= AS

�

        (3.3.10)

.ˆˆ incsca
22 φφ ⋅⋅= AS

�

        (3.3.11)

The amplitude scattering matrix depends on the directions of incidence and scattering
as well as on the size, morphology, composition, and orientation of the scattering ob-
ject with respect to the coordinate system. It also depends on the choice of the origin
of the coordinate system relative to the object. If known, the amplitude scattering
matrix gives the scattered and thus the total field, thereby providing a complete de-
scription of the scattering pattern in the far-field zone.

We have pointed out in Section 2.6 that when a wave propagates along the z-axis,
the -θ  and components-ϕ of the electric field vector are determined by the specific
choice of the meridional plane. Therefore, the amplitude scattering matrix explicitly
depends on incϕ  and scaϕ  even when 0inc =θ  or π  and/or 0sca =θ  or .π
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3.4 Reciprocity

A fundamental property of the scattering dyadic is the reciprocity relation, which is a
manifestation of the symmetry of the scattering process with respect to an inversion
of time (Saxon, 1955a). To derive the reciprocity relation, we first consider the scat-
tering of a spherical incoming wave by an arbitrary finite object embedded in an infi-
nite, homogeneous, nonabsorbing medium. In the far-field zone of the object, the total
electric field is the sum of the incoming and scattered spherical waves:

 ),ˆ()(iexp)ˆ()i(exp    )ˆ( sca1inc1 rErErE
r

rk
r

rkr +−=     (3.4.1)

where )ˆ(inc rE  and )ˆ(sca rE  are independent of r and

,0    )ˆ(ˆ inc =⋅ rEr     (3.4.2)

0)ˆ(ˆ sca =⋅ rEr     (3.4.3)

(cf. Eq. (2.11.6)).
Because of the linearity of the Maxwell equations and by analogy with Eq. (3.3.2),

the outgoing spherical wave must be linearly related to the incoming spherical wave.
Following Saxon (1955a), we express this relationship in terms of the so-called scat-
tering tensor S

�

 as follows:
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In view of Eq. (3.4.3), we have

.    )ˆ ,ˆ(ˆ 0rrr =′⋅ S
�

    (3.4.5)

Since )ˆ(inc rE  is transverse, the product rrr ′⋅′ ˆ)ˆ ,ˆ(S
�

 remains undefined by Eq. (3.4.4).
As before, we will complete the definition of the scattering tensor by taking this
product to be zero:

.    ˆ)ˆ ,ˆ( 0rrr =′⋅′S
�

    (3.4.6)

As a consequence of Eqs. (3.4.5) and (3.4.6), S
�

 has only four independent compo-
nents.

The derivation of the reciprocity relation for the scattering tensor starts from the
statement that if 1E  and 2E  are any two solutions of the Maxwell equations (but with
the same harmonic time-dependence), then

.0  )]}ˆ([)ˆ()]ˆ([)ˆ({ˆˆd 2112
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r

rrrrr rErErErErr
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 Indeed, using Eqs. (2.4.2), (3.1.1), and (3.1.2), we easily establish that
)( 2112 HEHE ×−×⋅∇  vanishes identically everywhere in space. Integrating this
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quantity over all space and applying the Gauss theorem (2.1.19) then yields Eq.
(3.4.7).

We now take 1E  and 2E  at infinity to be superpositions of incoming and outgo-
ing spherical waves: 

.2 ,1          ),ˆ( )(iexp)ˆ( )i(exp    )ˆ( sca1inc1 =+−= j
r

rk
r

rkr jjj rErErE     (3.4.8)

Taking into account Eq. (2.5.2), (2.5.15), (3.4.2), (3.4.3), (2.11.1), and the formula
(see Eq. (3.2.2))
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where )( 1−rO  is a vector with components vanishing at infinity at least as ,1−r  we
derive the following after some algebra:
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Using Eq. (3.4.4) to express the outgoing waves in terms of the incoming waves, we
then have
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Replacing r̂  by r′−ˆ  and r′ˆ  by r̂−  in the last term and transposing the tensor product
according to Eq. (A.6), we derive
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Since inc
1E  and inc

2E  are arbitrary, we finally have T)]ˆ ,ˆ([    )ˆ ,ˆ( rrrr −′−=′ SS
��

 or

.)]ˆ ,ˆ([    )ˆ ,ˆ( Trrrr ′=−′− SS
��

    (3.4.13)

This is the reciprocity condition for the scattering tensor.
It should be remarked that in deriving Eq. (3.4.7), we assumed, as almost every-

where else in this book, that the permeability, permittivity, and conductivity are sca-
lars. However, it is easily checked that Eq. (3.4.7) and thus the reciprocity condition
(3.4.13) remain valid even when the permeability, permittivity, and conductivity of
the scattering object are tensors provided that all these tensors are symmetric. If any
of these tensors is not symmetric, then Eq. (3.4.13) may become invalid (Dolginov et
al., 1995; Lacoste and van Tiggelen, 1999).

We now use Eq. (3.4.13) to derive the reciprocity relation for the scattering dyadic
by considering the case in which the scattering object is illuminated by a plane wave
incident along the direction .ˆ incn  As follows from Eqs. (3.2.16) and (3.3.1), the total
electric field in the far-field zone is given by
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Representing the incident plane wave as a superposition of incoming and outgoing
spherical waves,
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(see Appendix B), we derive
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Considering this a special form of Eq. (3.4.1) and recalling the definition of the scat-
tering tensor, Eq. (3.4.4), we have

].)ˆ ,ˆ()ˆˆ(δ[ 2i    )ˆ( inc
0

incscainc
0

scainc

1

scasca
1 EnnEnnnE ⋅−−= S

k
�π     (3.4.17)

It now follows from the definition of the scattering dyadic, Eqs. (3.3.2)–(3.3.4), that
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Finally, from Eqs. (3.4.13) and (3.4.18) we derive the reciprocity relation for the
scattering dyadic:

.)]ˆ ,ˆ([    )ˆ ,ˆ( Tincscascainc nnnn AA
��

=−−     (3.4.19)

It is easy to see that the reciprocity relation can be interpreted as follows: if the source
of light and the detector are interchanged then the new scattering dyadic is obtained
by transposing the original scattering dyadic (Fig. 3.4.1).

The reciprocity relation for the amplitude scattering matrix follows from Eqs.
(3.3.8)–(3.3.11) and (3.4.19) and the unit vector identities
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Simple algebra gives
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An interesting consequence of reciprocity is the so-called backscattering theorem,
which directly follows from Eq. (3.4.21) after substituting nn ˆˆ inc =  and :ˆˆ sca nn −=
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)ˆ ,ˆ(    )ˆ ,ˆ( 1221 nnnn −−=− SS     (3.4.22)

(van de Hulst, 1957, Section 5.32).
Because of the universal nature of reciprocity, Eqs. (3.4.19), (3.4.21), and (3.4.22)

are important tests in computations or measurements of light scattering by small par-
ticles: violation of reciprocity means that the computations or measurements are in-
correct or inaccurate. Alternatively, the use of reciprocity can substantially shorten
required computer time or reduce the measurement effort because one may calculate
or measure light scattering for only half of the scattering geometries and then use Eqs.
(3.4.19) and (3.4.21) for the reciprocal geometries. Reciprocity also plays a funda-
mental role in the effect of coherent backscattering of light from discrete random me-
dia discussed in Chapter 14.

As we have already indicated, Eqs. (3.4.19) and (3.4.21) are valid provided that
the permeability, permittivity, and conductivity of the scattering object are symmetric
tensors. If the scattering object and/or the surrounding medium consist of magneto-
optic materials and are placed in a constant magnetic field B, then Eqs. (3.4.19) and
(3.4.21) must be replaced by

Detector

Source of light

incn̂

scan̂

D
etector

Source of light

incn̂

scan̂−

−

(a)

(b)

Figure 3.4.1.  (a) Direct scattering configuration. (b) Reciprocal scattering configuration.
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(Dolginov et al., 1995).

3.5 Scale invariance rule

Another fundamental property of electromagnetic scattering is the so-called scale
invariance rule (also referred to as the principle of electromagnetic similitude). The
general derivation of this rule was given by Mishchenko (2006) and starts with the
introduction of the following dimensionless quantities:
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It is then rather obvious that the Lippmann–Schwinger equation (3.1.24) can be re-
written for a dimensionless dyadic transition operator as follows:
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where we have taken into account that

),(δ    )(δ 3 rr bb=     (3.5.7)

and the dimensionless “volume” INT
3
1INT VkV =

�

 is obtained from the actual volume
INTV  by multiplying all dimensions of the latter by .1k  Solving Eq. (3.5.6) by itera-

tion shows that the dimensionless dyadic transition operator depends on the dimen-
sionless particle volume rather than on the actual volume and on the wave number
separately.

The next step is to introduce the dimensionless scattering dyadic as follows:
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Then Eq. (3.3.5) takes the form
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which shows again that the dimensionless scattering dyadic is a function of the di-
mensionless particle volume rather than a function of the actual particle volume as
well as of the wave number. Of course, the same is true of the dimensionless ampli-
tude scattering matrix

).ˆ ,ˆ(    )ˆ ,ˆ( incsca
1

incsca nnnn SS k=
�

The scale invariance rule is a direct consequence of these results and states the
following. If one multiplies all linear dimensions of the scattering object by a constant
factor f (thereby not changing the shape and morphology of the object and its orienta-
tion with respect to the coordinate system) and multiplies the wave number 1k  by a
factor ,1 f  then the dimensionless scattering dyadic and the dimensionless amplitude
scattering matrix of the object do not change.

a

)a(

)b(

)c(

Figure 3.5.1.  Three classes of electromagnetically similar objects. Note that the objects in a
class have geometrically similar shapes and morphologies as well as identical orientations with
respect to the laboratory reference frame.



Chapter 386

This rule can be reformulated as follows. Consider a class of geometrically similar
objects with geometrically similar spatial distributions of the relative refractive index
and the same orientation with respect to the laboratory reference frame (Fig. 3.5.1). It
is clear that each object from the class can be uniquely identified by the value of a
typical linear dimension a (for example, the largest or the smallest dimension of the
object or the radius of the surface- or volume-equivalent sphere). Then the scale in-
variance rule implies that the dimensionless scattering characteristics of the objects do
not depend on specific values of a and ,1k  but rather depend on the product of a and

1k  traditionally called the size parameter x.
The size parameter can also be expressed in terms of the wavelength of the inci-

dent wave in the exterior region, ,2 11 kπλ =  as .2 1λπax =  This means that multi-
plying the typical particle size and the wavelength by the same factor f (see Fig. 3.5.2)
does not change the dimensionless scattering dyadic and the dimensionless amplitude
scattering matrix.

The scale invariance rule can be very helpful in practice because it makes a single
computation or measurement applicable to all couplets {size, wavelength} having the
same ratio of size to wavelength, provided that the relative refractive index remains
the same. In particular, the scale invariance rule is the basic physical principle of the
so-called microwave analog technique. The latter involves measurements of micro-
wave scattering by easily manufactured centimeter-sized objects followed by ex-
trapolation to other wavelengths (e.g., visible or infrared) by keeping the ratio of size
to wavelength fixed (e.g., Gustafson, 2000 and Section 8.2 of MTL).

The ratios aA )ˆ ,ˆ( incsca nn
�

 and a)ˆ ,ˆ( incsca nnS  are also scale-invariant quantities.
Indeed, since assuming

constant    1 =ak

yields

=  )ˆ ,ˆ( incsca
1 nnAk
�

 constant

λf

a

fa

λ1
1

Figure 3.5.2.  Scale invariance rule.
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and

   )ˆ ,ˆ( incsca
1 =nnSk constant,

dividing the latter two equalities by the first equality must also yield constants.

3.6 Electromagnetic power and electromagnetic
energy density

Although the knowledge of the amplitude scattering matrix provides the complete
description of the monochromatic scattering process in the far-field zone, the meas-
urement of the amplitude scattering matrix is a very complex experimental problem
involving the determination of both the amplitude and the phase of the incident and
scattered waves. Measuring the phase is especially difficult, and only a handful of
such experiments have been performed, all using the microwave analog technique
(Gustafson, 2000). The majority of other experiments have dealt with quasi-
monochromatic rather than monochromatic light and involved measurements of de-
rivative quantities having the dimension of energy flux rather than the electric field
itself. It is therefore more convenient to characterize the scattering process using
quantities that are easier to measure and are encountered more often, even though
they may provide a less complete description of the scattering pattern in some cases.
Such quantities will be introduced in this and the following sections.

Consider the standard measurement configuration involving a well-collimated
detector of electromagnetic radiation located at a distance r from the scattering object
in the far-field zone, with its sensitive surface aligned normal to and centered on the
position vector rr ˆ  r=  (see Fig. 3.6.1). The functional definition of a well-collimated
detector suitable for our purposes is that of a sensitive plane surface of an area S∆
that registers the energy of monochromatic or quasi-monochromatic light impinging
on any point of S∆  in directions confined to a small solid angle Ω∆  (called the de-
tector angular aperture) centered at the local normal to the detector surface. We will
assume that the angular size of the sensitive surface of the detector as seen from the
scattering object is smaller than the detector angular aperture:

.∆    ∆
2 Ω<

r
S    (3.6.1)

This important inequality ensures that if the detector is centered on the scattering ob-
ject then all radiation scattered by the object in radial directions and impinging on

S∆  is detected. For well-collimated detectors with a small angular aperture, the con-
dition (3.6.1) usually implies that the distance r from the scattering object to the de-
tector is much greater than the diameter D of the sensitive surface of the detector:

r � D.    (3.6.2)
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We begin by writing the time-averaged Poynting vector tt �′� ),(rS  at any point of
the sensitive surface of the detector located in the far-field zone as the sum of three
terms:

})]([)(Re{    ) ,( 2
1 ∗′×′=�′� rHrEr ttS

   ,) ,() ,() ,(  extscainc
ttt ttt �′�+�′�+�′�= rrr SSS    (3.6.3)

where rr ′′=′ ˆr  is the corresponding radius vector,

})]([)(Re{    ) ,( incinc
2
1inc ∗′×′=�′� rHrEr ttS    (3.6.4)

and

})]([)(Re{    ) ,( scasca
2
1sca ∗′×′=�′� rHrEr ttS    (3.6.5)

are the Poynting vectors associated with the incident and the scattered fields, respec-

∆S

Incident plane wave

D
etector 2 D

et
ec

to
r 1

incn̂

O

scaˆˆ nr = Scattered spherical
wave

Figure 3.6.1.  Response of the collimated detector depends on the line of sight.
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tively, and

})]([)()]([)(Re{    ) ,( incscascainc
2
1ext ∗∗ ′×′+′×′=�′� rHrErHrEr ttS    (3.6.6)

can be interpreted as the term caused by interaction between the incident and the
scattered fields.

Let us consider a scattering object illuminated by a plane electromagnetic wave.
Recalling Eqs. (2.5.6), (2.5.8), (2.5.17), (3.3.1), and (B.10), we have for the incident
wave in the far-field zone of the scattering particle:
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Equations (2.11.8) and (3.2.16) give for the scattered spherical wave:
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One can now derive that the total electromagnetic power received by a well-
collimated detector is
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when incˆˆ nr ≠  (detector 2 in Fig. 3.6.1), whereas for the exact forward-scattering
direction (detector 1),
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where 2∆    rS=′Ω  is the solid angle centered at the direction incn̂  and subtended by
the detector surface at the distance r from the particle. Equations (3.6.13a) and
(3.6.13b) are a particular case of the so-called optical theorem.

Note that the presence of the terms proportional to the delta function )ˆˆ(δ inc rn +
on the right-hand sides of Eqs. (3.6.7) and (3.6.9) seems to indicate that there is inter-
ference of the incident field and the field scattered in the exact backscattering direc-
tion. It is easy to verify, however, that the contribution of the interference term

tt �′� ) ,(ext rS  to the signal measured by a detector facing the exact backscattering di-
rection vanishes upon taking the real part of the signal according to Eq. (3.6.6).

The first term on the right-hand side of Eq. (3.6.13b) is proportional to the detec-
tor area S∆  and is equal to the electromagnetic power that would be received by de-
tector 1 in the absence of the scattering object (cf. Eq. (2.5.23) with ),0I =m  whereas
the second term is independent of S∆  and describes attenuation caused by interpos-
ing the object between the light source and the detector. Thus, the detector centered at
the exact forward-scattering direction measures the power of the incident light attenu-
ated by the interference of the incident and the scattered fields plus a relatively small
contribution from the scattered light, whereas the detector centered at any other di-
rection registers only the scattered light. These are two fundamental features of elec-
tromagnetic scattering by a fixed object.

It is extremely important that in either case the detector reacts to a transverse
electromagnetic wave, be it the scattered spherical wave propagating in a direction
away from incn̂  (detector 2) or the superposition of the incident plane wave and the
scattered spherical wave propagating in the incidence direction (detector 1). We will
see in the following two sections that this allows one to describe the polarization re-
sponse of detectors 1 and 2 using the Stokes vector formalism.
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The formula for the time-averaged electromagnetic energy density of the total
field at a point r follows from Eq. (2.5.27):
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is the component due to the incident field,
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is that due to the scattered field, and
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is that due to the interference of the incident and the forward-scattered field. The lat-
ter term vanishes everywhere except along the straight line originating at the scatter-
ing object and extending in the incidence direction.

The ratio of minus the second term on the right-hand side of Eq. (3.6.13b) to the
incident energy flux has the dimension of area and is called the extinction cross sec-
tion, extC  (see also Section 3.9). Therefore, Eq. (3.6.13b) can also be written as fol-
lows:
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It is well known that the extinction cross section can exceed the area of the object’s
geometrical projection by a factor of several (e.g., Section 9.1 of MTL). Therefore, it
is necessary to assume that the diameter D of the surface of detector 1 is significantly
greater than any linear dimension of the scattering object:

D � 2a.        (3.6.19)

Indeed, this requirement ensures that the signal measured by detector 1 is positive
and, thus, physically meaningful. In general, this requirement does not apply to de-
tector 2 in Fig. 3.6.1.

There is another fundamental reason for imposing the requirement (3.6.19). As we
have already emphasized, the far-field-zone approximation implies the treatment of
the scatterer as a point-like object. This treatment is justified for the derivation of the
above formulas, but becomes too crude when one attempts to describe the interaction
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of the incident plane wave and the scattered field across the sensitive surface of the
detector facing the incident light. To do that properly, we should recall that the actual

Incident plane 
wave

incn̂

Geometrical shadow 
of the scattering object

Detector surface

incn̂

incn̂

incn̂

(a)

(b)

Wavelet

Wavelet

Figure 3.6.2.  (a) The wavelets generated by different elementary volume elements interact
with the incident plane wave along the respective straight lines parallel to .ˆ incn  (b) To capture
the interaction of all wavelets generated by different elementary volume elements with the
incident plane wave, the detector surface must be greater than the object’s geometrical shadow.
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scattered field is a superposition of spherical wavelets generated by elementary vol-
ume elements of the scattering object. It is clear from the previous discussion that
each wavelet interacts with the incident plane wave only along the straight line drawn
through the center of the corresponding volume element and parallel to the incidence
direction incn̂  (Fig. 3.6.2(a)). Therefore, to capture each individual interaction, the
detector surface must exceed the area of the shadow cast by the scatterer onto the
plane normal to ,ˆ incn  Fig. 3.6.2(b).

Another important practical aspect of scattering measurements is that the angular
scattering pattern for a particle comparable to and larger than the wavelength is
known to vary dramatically with scattering direction. This angular variability can be
traced back to the complex exponential  factor )ˆiexp( 1 rr ′⋅− k  on the right-hand side
of Eq. (3.2.14). Indeed, the electric field contributions from two arbitrary elementary
volumes of the scattering object centered at r′  and r ′′  interfere in the far-field zone,
the result of the interference being controlled by the product

)].(ˆiexp[)]ˆiexp()[ˆiexp( 111 rrrrrrr ′′−′⋅−=′′⋅−′⋅− ∗ kkk     (3.6.20)

Obviously, depending on the angle between r̂  and rr ′′−′  and on ,|| rr ′′−′  this com-
plex exponential can be a rapidly varying function of .r̂  As a result, the angular scat-
tering pattern in the far-field zone can be expected to be a superposition of multiple
maxima and minima generated by different pairs of elementary volume elements of
the scatterer. The most rapidly changing component of the scattering pattern should
be caused by the pairs of elementary volume elements with rrr ˆ)( ⊥′′−′  and

|| rr ′′−′ ≈ .2a  Therefore, the far-field angular pattern can be expected to vary quite
significantly even when the scattering direction changes by as little as )2( 1akπ (rad)
since this change corresponds to a change of the phase )(ˆ1 rrr ′′−′⋅k  equal to .π  An
example of this strong angular variability can be seen in the upper left panel of Plate
11.13.1, which will be further discussed in Section 11.13.

Consequently, if a detector were to fully resolve this angular variability, the dis-
tance r from the scattering object to the detector must satisfy the following inequality:

r  � .1

π
aDk     (3.6.21)

If this requirement is not met, then the detector will record a convolution of the an-
gular scattering pattern with the detector angular aperture. For particles greater than
the wavelength, the condition (3.6.21) becomes much stronger than the condition
(3.6.2).

3.7 Phase matrix

In the thought experiment discussed in the previous section, it was assumed that the
detectors can measure only the total power of electromagnetic radiation impinging on
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their sensitive surfaces in directions within their angular apertures and that they make
no distinction between electromagnetic waves with different states of polarization.
Many detectors of electromagnetic energy are indeed polarization-insensitive. How-
ever, by interposing one or more optical elements such as polarizers and retarders (see
Section 2.10) between the source of light and the scattering object, one can generate
incident light with a specific state of polarization, whereas interposing one or more
optical elements between the object and the detector enables the latter to measure the
power corresponding to a particular polarization component of the scattered light. By
repeating the measurement for a number of different combinations and/or orientations
of the optical elements, one can, in principle, determine the specific prescription for
the transformation of a complete set of polarization characteristics of the incident
light into that of the scattered light provided that both sets of characteristics have the
same dimension of energy flux. This prescription is usually formulated in terms of the
so-called phase and extinction matrices.

As discussed in Section 2.6, convenient complete sets of polarization characteris-
tics having the dimension of monochromatic energy flux are the coherency and
Stokes column vectors. So we will now assume that a measurement device realizing
the situation shown schematically in Fig. 3.6.1 can:

1. Generate incident light with different (but physically realizable) combinations
of coherency or Stokes column vector components.

2. Measure the electromagnetic power associated with any component of the
coherency or the Stokes column vector and equal to the integral of the com-
ponent over the surface S∆  of the collimated detector aligned normal to the
direction of propagation .r̂  The component itself is then found by dividing
the measured power by .∆S

Let us first consider the situation when the scattering direction is away from the
incidence direction ).ˆˆ( incnr ≠  According to the discussion of the previous section,
detector 2 in Fig. 3.6.1 registers only the scattered radiation in the form of a trans-
verse outgoing spherical wave. Therefore, one can express the polarization response
of the detector in terms of the coherency column vector of the scattered wave as fol-
lows:

),ˆ(∆    ) ( scasca nrSJ J2Signal =       ,ˆ   ˆ incsca nn ≠             (3.7.1)

where
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Recalling that the coherency column vector of the incident plane wave is given by
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it is straightforward to derive the following relationship between the coherency col-
umn vectors of the incident and scattered light:
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where the elements of the 44×  coherency phase matrix )ˆ,ˆ( incsca nnJZ  have the di-
mension of area and are quadratic combinations of the elements of the amplitude
scattering matrix :)ˆ ,ˆ( incsca nnS
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In the Stokes-vector representation,

),ˆ(∆    scasca nrS I2Signal =       ,ˆˆ incsca nn ≠          (3.7.6)

where the Stokes column vector of the scattered spherical wave is given by
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The corresponding scattering transformation now reads:

 ,)ˆ ,ˆ( 1    )ˆ( incincsca
2

scasca IZI nnn
r

r =    (3.7.8)

where )ˆ ,ˆ( incsca nnZ  is the 44×  Stokes phase matrix, and the Stokes column vector of
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the incident plane wave is given by
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Explicit formulas for the elements of the Stokes phase matrix in terms of the ampli-
tude scattering matrix elements result from

1incscaincsca )ˆ ,ˆ(    )ˆ ,ˆ( −= DZDZ nnnn J     (3.7.10)

 (cf. Eqs. (2.6.5) and (2.6.7)) and are as follows:
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),Im(    2122121114
∗∗ −−= SSSSZ           (3.7.14)

),|||||||(|    2
22

2
21

2
12

2
112

1
21 SSSSZ −−+=            (3.7.15)

),|||||||(|    2
22

2
21

2
12

2
112

1
22 SSSSZ +−−=           (3.7.16)

),Re(    2122121123
∗∗ −−= SSSSZ           (3.7.17)

),Im(    2122121124
∗∗ +−= SSSSZ           (3.7.18)

),Re(    1222211131
∗∗ +−= SSSSZ           (3.7.19)

),Re(    1222211132
∗∗ −−= SSSSZ           (3.7.20)

),Re(    2112221133
∗∗ += SSSSZ           (3.7.21)

),Im(    1221221134
∗∗ += SSSSZ           (3.7.22)

),Im(    1222112141
∗∗ +−= SSSSZ            (3.7.23)

),Im(    1222112142
∗∗ −−= SSSSZ           (3.7.24)

),Im(    2112112243
∗∗ −= SSSSZ            (3.7.25)

).Re(    2112112244
∗∗ −= SSSSZ           (3.7.26)

Finally, the modified Stokes and circular-polarization phase matrices are given by
1incscaincscaMS )ˆ ,ˆ(    )ˆ ,ˆ( −= BZBZ nnnn     (3.7.27)

and

,)ˆ ,ˆ(    )ˆ ,ˆ( 1incscaincscaCP −= AZAZ nn nn     (3.7.28)

respectively (see Eqs. (2.6.9)–(2.6.16)). The elements of the matrices Z  and MSZ  are
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real-valued. Like the amplitude scattering matrix, the phase matrices explicitly de-
pend on incϕ  and scaϕ  even when the incident and/or scattered light propagates along
the z-axis.

The elements of all phase matrices have the dimension of area. It is easy to see
that the dimensionless products of 2

1k  and the phase matrix elements satisfy the scale
invariance rule (see Section 3.5). Another way to create scale-invariant quantities is to
divide the phase matrix elements by .2a

Up until now we have been considering only the scattering of monochromatic
plane waves. However, we already pointed out in Section 2.9 that the formalism
based on the solution of time-harmonic Maxwell equations must also be applicable to
quasi-monochromatic light. Therefore, Eqs. (3.7.4) and (3.7.8) remain valid even
when the incident radiation is a parallel quasi-monochromatic beam provided that the
coherency and Stokes column vectors entering Eqs. (3.7.4) and (3.7.8) are averages
taken over a sufficiently long time interval.

In general, all 16 elements of any of the phase matrices introduced above are non-
zero. However, the phase matrix elements of a single particle are expressed in terms
of only seven independent real numbers resulting from the four moduli || ijS  =   ,( ji

)2 ,1  and three differences in phase between the .ijS  Therefore, only seven of the
phase matrix elements are actually independent, and there must be nine unique rela-
tions among the sixteen phase matrix elements. Furthermore, the specific mathemati-
cal structure of the phase matrix can also be used to derive many useful linear and
quadratic inequalities for the phase matrix elements.  The most important of these
inequalities are

0    11 ≥Z      (3.7.29)

(this property follows directly from Eq. (3.7.11)) and

11    || ZZij ≤    (i, j = 1, …, 4).     (3.7.30)

The reader is referred to Hovenier et al. (1986), Cloude and Pottier (1996), and Ho-
venier and van der Mee (1996, 2000) for a review of this subject and a discussion of
how the general properties of the phase matrix can be used for testing the results of
theoretical computations and laboratory measurements.

From Eqs. (3.7.11)–(3.7.26) and (3.4.21) we derive the reciprocity relation for the
Stokes phase matrix:

,)]ˆ ,ˆ([    )ˆ ,ˆ( 3
Tincsca

3
scainc ∆Z∆Z nnnn =−−     (3.7.31)

where
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The reciprocity relations for the other phase matrices can be easily obtained from Eqs.
(3.7.10), (3.7.27), and (3.7.28):

DZDZ )ˆ ,ˆ(    )ˆ ,ˆ( scainc1scainc nnnn −−=−− −J

      D∆Z∆D 3
Tincsca

3
1 )]ˆ ,ˆ([  nn−=

      D∆DZD∆D 3
T1incsca

3
1 ])ˆ ,ˆ([  −−= nnJ

      D∆DZD∆D 3
TTincscaT1

3
1 )]ˆ ,ˆ([][  nnJ−−=

      ,)]ˆ ,ˆ([  23
Tincsca

23 ∆Z∆ nnJ=     (3.7.33)

1scaincscaincMS )ˆ ,ˆ(    )ˆ ,ˆ( −−−=−− BZBZ nnnn

   1
3

Tincsca
3 )]ˆ ,ˆ([  −= B∆Z∆B nn

     1
3

TincscaMS1
3 ])ˆ ,ˆ([  −−= B∆BZB∆B nn

     1
3

T1TincscaMST
3 ][)]ˆ ,ˆ([  −−= B∆BZB∆B nn

     ,][)]ˆ ,ˆ([  1MSTincscaMSMS −= ∆Z∆ nn     (3.7.34)

1
3

T1TincscaCPT
3

scaincCP ][)]ˆ ,ˆ([    )ˆ ,ˆ( −−=−− A∆AZA∆AZ nnnn

   ,)]ˆ ,ˆ([  TincscaCP nnZ=     (3.7.35)

where
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    (3.7.37)

The backscattering theorem, Eq. (3.4.22), along with Eqs. (3.7.11), (3.7.16), (3.7.21),
and (3.7.26), leads to the following general property of the backscattering Stokes
phase matrix (Mishchenko et al., 2000b):

.0    )ˆ ,ˆ()ˆ ,ˆ()ˆ ,ˆ()ˆ ,ˆ( 44332211 =−−−+−−− nnnnnnnn ZZZZ     (3.7.38)

Electromagnetic scattering most typically produces light with polarization char-
acteristics different from those of the incident beam. If the incident beam is unpolar-
ized, i.e., ,]0  0  0  [  Tincinc I=I  the scattered light generally has at least one nonzero
Stokes parameter other than intensity:
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.      ,      ,       ,   inc
41

scainc
31

scainc
21

scainc
11

sca IZVIZUIZQIZI ====      (3.7.39)

This effect is traditionally called “polarization” and results in scattered light with non-
zero degree of polarization:

11

2
41

2
31

2
21    

Z
ZZZ

P
++

=     (3.7.40)

(see Eq. (2.9.20)). Obviously, if the incident light is unpolarized, then the element
11Z  determines the angular distribution of the scattered intensity. When the incident

beam is linearly polarized, i.e., ,]0   [ Tincincincinc UQI=I  the scattered light may
become elliptically polarized ).0( sca ≠V  Conversely, when the incident light is cir-
cularly polarized, i.e., ,] 0 0[  Tincincinc VI=I  the scattered light may become par-
tially linearly polarized 0 ( sca ≠Q  and/or ).0 sca ≠U

A general feature of scattering by a single particle is that if the incident beam is
fully polarized ),1  ( inc =P  then the scattered light is also fully polarized. Hovenier et
al. (1986) gave a proof of this property based on the general mathematical structure of
the Stokes phase matrix. Thus, a single particle does not depolarize fully polarized
incident light. However, single scattering by a collection of non-identical nonspheri-
cal particles (including particles of the same kind but with different orientations) can
result in depolarization of incident polarized light, and this is another important prop-
erty of electromagnetic scattering.

3.8 Extinction matrix

Let us now consider the special case of the exact forward-scattering direction =  ˆ(r
).ˆ incn  Because now both the incident plane wave and the scattered outgoing spherical

wave propagate in the same direction and are transverse, their superposition is also a
transverse wave propagating in the forward direction. Therefore, we can define the
coherency column vector of the total field for propagation directions r̂  very close to

incn̂  as follows:

,

)]ˆ()[ˆ(
)]ˆ()[ˆ(
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θϕ

ϕθ

θθ

µ
�J    (3.8.1)

where the total electric field is given by

).ˆ()ˆ(    )ˆ( scainc rErErE rrr +=    (3.8.2)

Integrating the elements of )ˆ( rrJ  over the surface of the collimated detector aligned
normal to incn̂  and using Eqs. (3.6.7) and (3.6.10), one can derive for the coherency-
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vector representation of the polarized signal recorded by detector 1 in Fig. 3.6.1:

)ˆ(d   )(
∆  

rrS
S

J J1 Signal =

      incincinc
2

incincinc )ˆ ,ˆ(∆)ˆ(∆  JZJΚJ nnn JJ

r
SS +−=            (3.8.3a)

      ),( )ˆ(∆  2incincinc −+−= rS J OJΚJ n      (3.8.3b)

where )ˆ ,ˆ( incinc nnJZ  is the forward-scattering coherency phase matrix, )( 2−rO  is a
44×  matrix with elements vanishing at infinity as ,2−r  and the elements of the 44×

coherency extinction matrix ),( incinc ϕθJΚ  are expressed in terms of the elements of
the forward-scattering amplitude matrix ), ;,( incincincinc ϕθϕθS  as follows:
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J πΚ    (3.8.4)

In the Stokes-vector representation,

)ˆ(d    
∆  

rrS
S

I1 Signal =

     incincinc
2

incincinc )ˆ ,ˆ(∆)ˆ(∆  IZIΚI nnn
r
SS +−=          (3.8.5a)

     ),( )ˆ(∆  2incincinc −+−= rS OIΚI n      (3.8.5b)

where

).ˆ(    )ˆ( incinc nn rr JDI =    (3.8.6)

The 44×  Stokes extinction matrix )ˆ( incnK  is given by

.)ˆ(    )ˆ( 1incinc −= DΚDΚ nn J    (3.8.7)

The explicit formulas for the elements of this matrix in terms of the elements of the
forward-scattering amplitude matrix ), ;,( incincincinc ϕθϕθS  are as follows:

,4 ..., ,1        ),Im( 2    2211
1

=+= jSS
k

K jj
π    (3.8.8)

),Im( 2        2211
1

2112 SS
k

KK −== π    (3.8.9)

),Im( 2       2112
1

3113 SS
k

KK +−== π           (3.8.10)

),Re( 2        1221
1

4114 SS
k

KK −== π           (3.8.11)
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),Im( 2        1221
1

3223 SS
k

KK −=−= π           (3.8.12)

),Re( 2         2112
1

4224 SS
k

KK +−=−= π           (3.8.13)

).Re( 2        1122
1

4334 SS
k

KK −=−= π          (3.8.14)

The elements of the coherency and Stokes extinction matrices have the dimension
of area. The dimensionless products of 2

1k  and the extinction matrix elements as well
as the dimensionless ratios of the extinction matrix elements and 2a  satisfy the scale
invariance rule (see Section 3.5).

Equations (3.8.3) and (3.8.5) represent the most general form of the optical theo-
rem. They show that the presence of the scattering object changes not only the total
power of the electromagnetic radiation received by the detector facing the incident
wave (detector 1 in Fig. 3.6.1) but also, perhaps, its state of polarization. The latter
phenomenon is called dichroism and results from different attenuation rates for dif-
ferent polarization components of the incident wave. Equations (3.8.3) and (3.8.5)
remain valid if the incident radiation is a parallel quasi-monochromatic beam of light
rather than a plane electromagnetic wave.

By placing detector 1 sufficiently far from the scatterer, one can make the contri-
bution of the third term on the right-hand side of Eqs. (3.8.5a) and (3.8.5b) negligibly
small:

.)ˆ(∆    incincinc IΚI1 Signal n−=
∞→

S
r

          (3.8.15)

As a consequence, the extinction matrix becomes a directly observable quantity.
It is clear from Eqs. (3.8.8)–(3.8.14) that only seven of the sixteen elements of the

Stokes extinction matrix are independent. It is easy to verify that this is also true of
the coherency extinction matrix. The elements of both matrices explicitly depend on

incϕ  even when the incident wave propagates along the z-axis.
From Eqs. (3.4.21) and (3.8.8)–(3.8.14) we obtain the reciprocity relation for the

Stokes extinction matrix:

.)]ˆ([    )ˆ( 3
Tinc

3
inc ∆Κ∆Κ nn =−           (3.8.16)

It is also straightforward to derive a related symmetry property:
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Κ       (3.8.17)

Thus, the only effect of reversing the direction of propagation is to change the sign of
four elements of the Stokes extinction matrix.
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The modified Stokes and circular-polarization extinction matrices are given by

,)ˆ(    )ˆ( 1incincMS −= BΚBΚ nn     (3.8.18)

.)ˆ(    )ˆ( 1incincCP −= AΚAΚ nn     (3.8.19)

Reciprocity relations for the matrices ),ˆ( incnJΚ  ),ˆ( incMS nΚ  and )ˆ( incCP nΚ  can be
derived from Eq. (3.8.16) by analogy with Eqs. (3.7.33)–(3.7.35):

,)]ˆ([    )ˆ( 23
Tinc

23
inc ∆Κ∆Κ nn JJ =−     (3.8.20)

,][)]ˆ([    )ˆ( 1MSTincMSMSincMS −=− ∆Κ∆Κ nn     (3.8.21)

.)]ˆ([    )ˆ( TincCPincCP nn ΚΚ =−     (3.8.22)

3.9 Extinction, scattering, and absorption cross sections

The knowledge of the total electromagnetic field in the far-field zone also allows us to
calculate such important optical characteristics of the scattering object as the total
scattering, absorption, and extinction cross sections. These optical cross sections are
defined as follows. The product of the scattering cross section scaC  and the incident
monochromatic energy flux gives the total monochromatic power removed from the
incident wave resulting solely from scattering of the incident radiation in all direc-
tions. Analogously, the product of the absorption cross section absC  and the incident
monochromatic energy flux gives the total monochromatic power removed from the
incident wave as a result of absorption of light by the object. Of course, the absorbed
electromagnetic energy does not disappear, but rather is converted into other forms of
energy. Finally, the extinction cross section extC  is the sum of the scattering and ab-
sorption cross sections and, when multiplied by the incident monochromatic energy
flux, gives the total monochromatic power removed from the incident light due to the
combined effect of scattering and absorption.

To determine the total optical cross sections, we surround the object by an imagi-
nary sphere S of radius r large enough to be in the far-field zone. Since the surround-
ing medium is assumed to be nonabsorbing, the net rate at which the electromagnetic
energy crosses the surface S of the sphere is always nonnegative and is equal to the
power absorbed by the particle:

rrrrr ˆ) ,(ˆd    ˆ) ,(d   
4  

2abs ⋅��−=⋅��−= tt
S

trtSW SS
π

   (3.9.1)

(see Eq. (2.4.15)). According to Eq. (3.6.3), absW  can be written as a combination of
three terms:

,   extscaincabs WWWW +−=    (3.9.2)

where
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,ˆ) ,(ˆd   inc

4  

2inc rrr ⋅��−= ttrW S
π

   (3.9.3)

,ˆ) ,(ˆd   sca

4  

2sca rrr ⋅��= ttrW S
π

   (3.9.4)

.ˆ) ,(ˆd  ext

4  

2ext rrr ⋅��−= ttrW S
π

   (3.9.5)

incW  vanishes identically because the surrounding medium is nonabsorbing and
tt �� ) ,(inc rS  is a constant vector independent of r, whereas scaW  is the rate at which

the scattered energy crosses the surface S in the outward direction. Therefore, extW  is
equal to the sum of the energy scattering rate and the energy absorption rate:

.  absscaext WWW +=    (3.9.6)

Inserting Eqs. (3.6.5)–(3.6.11) in Eqs. (3.9.4) and (3.9.5) and recalling the definitions
of the extinction and scattering cross sections, we derive after some algebra
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   (3.9.7)
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WC    (3.9.8)

In view of Eqs. (3.2.16), (3.3.6), (3.7.7)–(3.7.9), and (3.8.8)–(3.8.11), Eqs. (3.9.7) and
(3.9.8) can be rewritten as follows:

incinc
13

incinc
12

incinc
11incext )ˆ()ˆ()ˆ([ 1  UQI

I
C nnn ΚΚΚ ++=

,])ˆ( incinc
14 VnΚ+    (3.9.9)

)ˆ(ˆd   sca

4  
inc

2

sca rr rI
I
rC =

π

     incinc
12

incinc
11

4  
inc )ˆ ,ˆ()ˆ ,ˆ([ˆd 1  QZIZ

I
nrnrr +=

π

       .])ˆ ,ˆ()ˆ ,ˆ( incinc
14

incinc
13 VZUZ nrnr ++      (3.9.10)

The absorption cross section is equal to the difference of the extinction and scat-
tering cross sections:

.0  scaextabs ≥−= CCC     (3.9.11)

The single-scattering albedo is defined as the ratio of the scattering and extinction
cross sections:
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.1        
ext

sca ≤=
C
Cϖ     (3.9.12)

Obviously, 1    =ϖ  for nonabsorbing particles.
Equations (3.9.9) and (3.9.10) (and thus Eqs. (3.9.11) and (3.9.12)) also hold for

quasi-monochromatic incident light provided that the elements of the Stokes column
vector entering these equations are averages over a time interval long compared with
the period of fluctuations. All cross sections are inherently non-negative real quanti-
ties and have the dimension of area. They depend on the direction, polarization state,
and wavelength of the incident light as well as on the particle size, morphology, rela-
tive refractive index, and orientation with respect to the reference frame. The products
of the cross sections and 2

1k  obey the scale invariance rule.
Equation (3.9.9) is another representation of the optical theorem and, along with

Eqs. (3.8.8)–(3.8.11), shows that although extinction is the combined effect of ab-
sorption and scattering in all directions by the object, it is determined only by the am-
plitude scattering matrix in the exact forward direction. This is a direct consequence
of the fact that extinction results from the interference between the incident and scat-
tered light (Eq. (3.6.6)) and the presence of delta-function terms in Eqs. (3.6.7) and
(3.6.9).

Equation (3.6.18) shows that the extinction cross section is a well-defined, ob-
servable quantity and can be determined by measuring )ˆ( inc

∆ nSW  without and with
the scattering object interposed between the source of light and the detector. The net
effect of the object is to reduce the detector area by “casting a shadow” of area .extC
Of course, this does not mean that extC  is merely given by the area G of the object’s
geometrical projection on the detector surface. However, this geometrical interpreta-
tion of the extinction cross section illustrates the rationale for introducing the dimen-
sionless efficiency factor for extinction by dividing the extinction cross section by the
geometrical cross section:

.  ext
ext G

CQ =     (3.9.13)

As demonstrated in Chapters 9 and 10 of MTL, extQ  can be considerably greater or
much less than unity. The efficiency factors for scattering and absorption are defined
analogously:

.           ,  abs
abs

sca
sca G

CQ
G
CQ ==     (3.9.14)

It is easy to see that the efficiency factors obey the scale invariance rule.
The quantity

inc

2sca
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rrIC r=
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11inc )ˆ ,ˆ()ˆ ,ˆ([ 1  QZIZ
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   ])ˆ ,ˆ()ˆ ,ˆ( incinc
14

incinc
13 VZUZ nrnr ++     (3.9.15)

has the dimension of area and is called the differential scattering cross section. It de-
scribes the angular distribution of the scattered light and specifies the electromagnetic
power scattered into a unit solid angle about a given direction per unit incident inten-
sity.1 The differential scattering cross section depends on the polarization state of the
incident light as well as on the incidence and scattering directions. Comparison of
Eqs. (3.9.10) and (3.9.15) shows that

.
d

d ˆd  sca

4  
sca Ωπ

CC r=     (3.9.16)

A quantity related to the differential scattering cross section is the phase function
)ˆ ,ˆ( incnrp  defined as

 .
d

d 4    )ˆ ,ˆ( sca

sca

inc

Ω
π C

C
p =nr     (3.9.17)

The convenience of the phase function is that it is dimensionless and normalized:

.1)ˆ ,ˆ(ˆd 
4
1 inc

4  
=nrrp

ππ
    (3.9.18)

The asymmetry parameter �� Θcos  is defined as the average cosine of the scat-
tering angle )ˆˆ (arccos    incnr ⋅=Θ  (i.e., the angle between the incidence and scattering
directions):

incinc

4  
ˆˆ)ˆ ,ˆ(ˆd 

4
1    cos nrnrr ⋅=�� p

ππ
Θ

  .ˆˆ 
d

d ˆd1  incsca

4  sca
nrr ⋅=

Ωπ

C
C

    (3.9.19)

The asymmetry parameter is positive if the particle scatters more light toward the
forward direction ),0    ( =Θ  is negative if more light is scattered toward the back-
scattering direction ),    ( πΘ =  and vanishes if the scattering is symmetric with respect
to the plane perpendicular to the incidence direction. Obviously, ].1 ,1[cos +−∈�� Θ
The limiting values correspond to the phase functions )ˆˆ(δ4 incnr +π  and −r̂(δ4π

),ˆ incn  respectively.

3.10 Coherency dyad of the total electric field

We explained in Section 3.6 that in order to characterize the directional flow and spa-

                                                
1 Note that the symbol Ωdd scaC  should not be interpreted as the derivative of a function of

.Ω
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tial distribution of electromagnetic energy that results from a scattering process, one
must calculate the Poynting vector and the energy density of the total electromagnetic
field. This, in turn, requires the knowledge of both the electric and the magnetic com-
ponents of the field. It would be attractive, however, to develop a simplified formal-
ism that would involve the electric field only and would make feasible the solution of
more involved problems such as the development of a unified microphysical theory of
radiative transfer and coherent backscattering (Chapters 8 and 14). Therefore, the aim
of this section is to analyze whether the scattering process can be described ade-
quately in terms of the coherency dyad introduced in Section 2.12.

As in Section 3.6, we begin by representing the coherency dyad of the total field
in the far-field zone as the sum of three components:

∗⊗= )] ,([) ,(    )( tt rErErρ�

   ),()(  intscainc rr ρρρ ��� ++=     (3.10.1)

where
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0
inc
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incincinc EErErE ttρ�     (3.10.2)

is the coherency dyad of the incident field,
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r

ttρ�        (3.10.3)

is the coherency dyad of the scattered field, and the component

∗∗ ⊗+⊗= )] ,([) ,()] ,([) ,(    )( incscascaincint tttt rErErErErρ�

 ∗⊗−−−+= )]ˆ([)]ˆˆ(δ)2iexp()ˆˆ(δ{[ 2i  sca
1

inc
0

inc
1

inc
2

1
rEErnrn rk
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π

  })()ˆ()]ˆˆ(δ)2iexp()ˆˆ(δ[ inc
0

sca
1

inc
1

inc ∗⊗−++−+ ErErnrn rk

       (3.10.4)

can be interpreted as the result of interaction of the incident and scattered fields. The
coherency dyad of the incident field yields directly the coherency and Stokes column
vectors of the incident field via

�
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�
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�
�
�
�
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�

⋅⋅
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=
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ρ
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�
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�

�

�J           (3.10.5)

and .  incinc JDI =  Furthermore, we can rewrite Eq. (3.10.3) in the form

∗⋅⊗⋅= ])ˆ ,ˆ([])ˆ ,ˆ([ 1    )( inc
0

incinc
0

inc
2

sca EnrEnrr AA
r

��

�ρ
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 ,)]ˆ ,ˆ([)ˆ ,ˆ( 1  Tincincinc
2

∗⋅⋅= nrnr AA
r

�

�

�

ρ     (3.10.6)

where we have used the dyadic identity (A.8). Recalling then that
incinc

0
incinc

0
inc
0 ˆˆ φθE ϕθ EE +=

and
scasca

1
scasca

1
sca
1 ˆ)ˆ(ˆ)ˆ()ˆ( φrθrrE ϕθ EE +=

and using Eqs. (3.3.6)–(3.3.11) as well as the identity (A.12) and the transversality
conditions (3.3.3) and (3.3.4), we easily recover Eqs. (3.7.4) and (3.7.8), in which
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ρ
ρ
ρ
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�

�

�

�

�J     (3.10.7)

and .)ˆ()ˆ( scasca rr rr JDI =  Finally, by integrating the coherency dyad of the total field
over the surface of detector 1 in Fig. 3.6.1 and applying similar algebra, we recover
Eqs. (3.8.3) and (3.8.5).

Thus, the use of the coherency dyad to describe the electromagnetic scattering
process appears to be consistent with the main results of Sections 3.7 and 3.8. How-
ever, one encounters a problem when the response of the detector facing the exact
backscattering direction is being considered. When the right-hand side of Eq. (3.10.4)
is integrated over the surface of this detector, the term proportional to )ˆˆ(δ inc rn +
gives a nonzero contribution due to apparent interference of the incident and the
backscattered field. However, in view of the discussion in Section 3.6 this contribu-
tion is unphysical. Indeed, the effect of interference of the incident and backscattered
fields is annihilated by the real filter Re on the right-hand side of Eq. (3.6.6) and by
the fact that the corresponding electric and magnetic contributions to tt �� ) ,(ext rU  in
Eq. (3.6.17) cancel each other. It is thus clear that one must exercise caution if the
coherency dyad is used as a basic characteristic of the electromagnetic scattering pro-
cess.

As we pointed out in Section 2.12, one of the main advantages of the formalism
based on the concept of the coherency dyad is that it does not require the electric field
to be transverse. Thus it can potentially be used to:

● Characterize the total field everywhere in space rather than in the far-field
zone only.

● Describe situations in which an object is illuminated by two or more sources
of radiation.

● Analyze electromagnetic scattering by time-variable objects.

Several examples of this versatility will be given in the remainder of this and in the
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following two sections.
Our first step is to include explicitly the time-harmonic factor and rewrite Eq.

(3.1.23) as follows:

inc
0

inc
1

    

sca ) ,()ˆiexp(d) ,(d    ),(
INTINT

ErrrnrrrrrE ⋅′′′′′⋅′′⋅′′= TkGt
VV

��

    ,        ),iexp( 3ℜ∈−× rtω     (3.10.8)

where it is assumed that the incident field is a plane electromagnetic wave incident in
the direction .ˆ incn  Hence, the total field can be expressed as

,        ),iexp()ˆ ,,(    ),( 3inc
0

inc ℜ∈−⋅= rEnrrE tt ωωT
�

    (3.10.9)

where T
�

is a transformation dyadic given by

Ik
��

)ˆiexp(    )ˆ ,,( inc
1

inc rnnr ⋅=ωT

). ,()ˆiexp(d) ,(d inc
1

    INTINT

rrrnrrrr ′′′′′⋅′′⋅′′+ TkG
VV

��

     (3.10.10)

The coherency dyad of the total field now takes the following form:

) ,() ,(    )( tt rErEr ∗⊗=ρ�

∗⋅⊗⋅= ])ˆ ,,([])ˆ ,,([  inc
0

incinc
0

inc EnrEnr ωω TT
��

  ,        ,)]ˆ ,,([)ˆ ,,(  3Tincincinc ℜ∈⋅⋅= ∗ rnrnr ωρω TT
�

�

�

  (3.10.11)

where incρ�  is the coherency dyad of the incident field given by Eq. (3.10.2). Equation
(3.10.11) generalizes Eqs. (3.10.1)–(3.10.4) and (3.10.6) and shows that the coher-
ency dyad of the total electric field everywhere in space is linearly expressed in the
coherency dyad of the incident electric field.

If the incident light is a parallel quasi-monochromatic beam then

,        ),iexp()()ˆ ,,(    ),( 3inc
0

inc ℜ∈−⋅= rEnrrE ttt ωωT
�

  (3.10.12)

where the fluctuating amplitude )(inc
0 tE  changes in time much more slowly than the

time-harmonic factor ).iexp( tω−  The average of the coherency dyad of the total
electric field over a time interval long compared with the typical period of fluctuation
is now given by

tt tt �⊗�=�� ∗ ) ,() ,(   )( rErErρ�

  ttt �⋅⊗⋅�= ∗)]()ˆ ,,([)]()ˆ ,,([  inc
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incinc
0

inc EnrEnr ωω TT
��

       ,)]ˆ ,,([)ˆ ,,(  Tincincinc ∗⋅��⋅= nrnr ωρω TT
�

�

�

t   (3.10.13)

where

.)]([)(   inc
0

inc
0

inc
tt tt �⊗�=�� ∗EEρ�       (3.10.14)
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Equation (3.10.13) demonstrates that the time average of the coherency dyad of the
total field everywhere in space is linearly expressed in the time average of the coher-
ency dyad of the incident quasi-monochromatic beam.

Comparison of Eqs. (3.10.11) and (3.10.13) reinforces the point made previously:
the scattering formalism based on the introduction of actual observables having the
dimension of electromagnetic energy flux applies equally to the situations when the
incident light is a plane electromagnetic wave and when it is a parallel quasi-
monochromatic beam.

3.11 Other types of illumination

Consider now a more complex case of illumination of an object by two monochro-
matic plane electromagnetic waves with angular frequencies 1ω  and ,12 ωω ≠
propagation directions inc

1n̂  and ,ˆ inc
2n  and amplitudes inc

01E  and ,inc
02E  respectively.

Note that inc
2n̂  may or may not coincide with .ˆ inc

1n  The total electric field is now the
vector superposition of two partial fields:

),iexp()ˆ ,,()iexp()ˆ ,,(    ),( 2
inc
02

inc
221

inc
01

inc
11 ttt ωωωω −⋅+−⋅= EnrEnrrE TT

��

.3ℜ∈r      (3.11.1)

Since ,12 ωω ≠  the average of the product ∗−− )]i[exp()iexp( 21 tt ωω  over a suffi-
ciently long time interval vanishes:

.0])i(exp[d1
||2

21

  

  21 ωωπ
ωω

−

+

=′−−′
�T

Tt

t
tt

T
    (3.11.2)

Therefore, the time average of the coherency dyad of the total field is equal to the
sum of the respective partial coherency dyads:

),()(   )( 21 rrr ρρρ ��� +=�� t     (3.11.3)

where

,2,1      ,)]ˆ ,,([)ˆ ,,(  )( Tincincinc =⋅⋅= ∗ iiiiiii nrnrr ωρωρ TT
�

�

�

�     (3.11.4)

.2,1        ,)(  inc
0

inc
0

inc =⊗= ∗ iiii EEρ�         (3.11.5)

Equations (3.11.3)–(3.11.5) can be generalized to any number N of incident plane
waves provided that all of them have different angular frequencies:

).(   )(
1

rr i

N

i

t ρρ ��

=

=��         (3.11.6)

Equation (3.11.6) has the following practical interpretation. Imagine N scattering
experiments in which a fixed particle is illuminated sequentially by each of N sources
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of monochromatic light. The corresponding illumination directions are given by the
unit vectors ,ˆ inc

in  ,...,,1 Ni =  and the angular frequencies of all the sources are dif-
ferent. One or several observable characteristics of the total radiation field are meas-
ured by a fixed detector. Now let us imagine that all the light sources are turned on
simultaneously, and the total radiation is measured by the same detector. Then, ac-
cording to Eq. (3.11.6), the reading of the detector will be equal to the sum of the N
readings recorded during the N individual experiments.

The requirement that the angular frequencies of all the N sources of light be dif-
ferent becomes unnecessary if the light is quasi-monochromatic so that the amplitudes

)(inc
0 tiE  fluctuate in time. Indeed, now we have instead of Eq. (3.11.6):

,)(   )(
1

ti

N

i

t ��=��

=

rr ρρ ��         (3.11.7)

where

∗⋅��⋅=�� Tincincinc )]ˆ ,,([)ˆ ,,(  )( iitiiiti nrnrr ωρωρ TT
�

�

�

�     (3.11.8)

and t���  denotes an average over a time period long compared with the typical pe-
riod of fluctuation. In deriving Eq. (3.11.7), we have taken into account that the fluc-
tuations of each amplitude )(inc

0 tiE  occur randomly and independently of those of all
the other amplitudes so that

0)]([)( inc
0

inc
0

�

=�⊗� ∗
tji tt EE     (3.11.9)

for any ,ji ≠  where, as before, 0
�

 is a zero dyad.

3.12 Variable scatterers

Most scatterers encountered in practice change during the time necessary to take a
measurement rather than remain fixed. However, the results of the two preceding sec-
tions remain valid provided that significant changes of the transformation dyadic re-
quire time intervals that are much longer than the period of time-harmonic oscillations
and/or much longer than the typical period of fluctuation.

Specifically, let us first assume that a scatterer is illuminated by N monochromatic
plane waves with different angular frequencies and arbitrary propagation directions.
Let ωT  be the shortest time interval such that

0])i(exp[d1   

  
=′−−′

+

tt
T ji

Tt

t
ωω

ω

ω
    (3.12.1)

for any .ji ≠  Let us also assume that the measurement is taken over a time interval
mT  such that ωT � .mT  Then, recalling Eqs. (3.11.4)–(3.11.6), we may conclude that

the reading of a detector of electromagnetic energy per unit time will be described by
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the following expression:

,)]ˆ ,,,([)ˆ ,,,(d1 Tincincinc
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nrnr ωρω TT
�
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    (3.12.2)

in which the transformation dyadic depends on time explicitly. It is clear that Eq.
(3.12.2) represents the sum of the N individual readings of the detector corresponding
to illumination of the object by each monochromatic plane wave separately.

Let us now assume that a scatterer is illuminated by a single quasi-monochromatic
beam and denote by fT  the shortest time interval such that averaging the coherency
dyad of the incident field over fT  gives the result indistinguishable from that obtained
by averaging over an infinite time interval:
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tt
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)(d1lim ρρ ��     (3.12.3)

for any t. Let us also assume that the typical time during which the transformation
dyadic changes appreciably, ,TT  is such that fT � TT  and that the measurement is
taken over a time interval mT  such that fT � .mT  Then, in view of Eq. (3.10.13), the
reading of the detector of electromagnetic energy per unit time will be described by
the expression
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Similarly, let us assume that the object is illuminated by N quasi-monochromatic
beams with arbitrary frequencies and propagation directions and that
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for any t and any .ji ≠  Then the reading of the detector per unit time is given by
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Again, Eq. (3.12.6) represents the sum of the N individual readings of the detector
corresponding to illumination of the object by each quasi-monochromatic beam sepa-
rately.

The results of this section are quite general and apply to all scattering objects that
change in time not too rapidly. As such, they expand significantly the range of appli-
cability of formulas derived in Chapters 6–8.
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3.13 Thermal emission

If the particle’s absolute temperature T is above zero, it can emit as well as scatter and
absorb electromagnetic radiation. The emitted radiation in the far-field zone of the
particle propagates in the radial direction, i.e., along the unit vector ,ˆ rrr =  where r
is the position vector of the observation point with origin inside the particle. The en-
ergetic and polarization characteristics of the emitted radiation are described by a
four-component emission Stokes column vector ),,ˆ(e ωTrΚ  defined in such a way
that the net rate at which the emitted energy crosses a surface element S∆  normal to
r̂  at a distance r from the particle at angular frequencies from ω  to ωω ∆+  is

).,,ˆ(∆∆1
1e2

e ωΚω TS
r

W r=     (3.13.1)

The ),,,ˆ(1e ωΚ Tr  the first component of the column vector, can also be interpreted as
the amount of electromagnetic energy emitted by the particle in the direction r̂  per
unit solid angle per unit frequency interval per unit time.

In order to calculate ),,,ˆ(e ωTrΚ  let us assume that the particle is placed inside an
opaque cavity of dimensions large compared with the particle and with any wave-
length under consideration (Fig. 3.13.1(a)). If the cavity and the particle are main-
tained at the constant absolute temperature T, then the equilibrium electromagnetic
radiation inside the cavity is isotropic, homogeneous, and unpolarized (Mandel and
Wolf, 1995). This radiation can be represented as a collection of quasi-
monochromatic, unpolarized, incoherent beams propagating in all directions and
characterized by the Planck blackbody energy distribution ).,(b ωTI  Specifically, at
any point inside the cavity the amount of radiant energy per unit frequency interval,
confined to a small solid angle Ω∆  about any direction, which crosses an area S∆
normal to this direction in unit time is given by

, 
1exp4

∆∆),(∆∆

B

23

3

b

�
�

�
�
�

�
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ωπ

ωΩωΩ
�
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where ,2πh=�  h is Planck’s constant, c is the speed of light in a vacuum, and Bk  is
Boltzmann’s constant.

Consider an imaginary collimated, polarization-sensitive detector of electromag-
netic radiation with surface S∆  and small solid-angle field of view ,∆Ω  placed at a
distance r from the particle (Fig. 3.13.1(a)). The dimension of the detector surface is
much greater than any dimension of the particle and r is large enough to be in the far-
field zone of the particle but smaller than .)∆∆( 21ΩS  The latter condition ensures
that all plane wave fronts incident on the detector in directions falling into its solid-
angle field of view Ω∆  are equally attenuated by the particle (Fig. 3.13.1(b)). The
surface S∆  is aligned normal to and centered on ,r̂  where r̂  is the unit vector origi-
nating inside the particle and pointing toward the detector.
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In the absence of the particle, the polarized signal per unit frequency interval
measured by the detector would be given by

),,(∆∆ b ωΩ TS I     (3.13.3)

where

�
�
�
�
�

�

�

�
�
�
�
�

�

�

=

0
0
0

),(

),(

b

b

ω

ω

TI

TI     (3.13.4)

is the blackbody Stokes column vector. The particle attenuates the incident blackbody
radiation, emits radiation, and scatters the blackbody radiation coming from all direc-
tions in the direction of the detector. Taking into account that only the radiation

Particle

(a)

(b)

ΩΩ

Particle Detector

S

r̂

Figure 3.13.1.  (a) Cavity, particle, and electromagnetic radiation field in thermal equilibrium.
(b) Illumination geometry.
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emitted and scattered by the particle within the solid-angle field of view Ω∆  is de-
tected (Fig. 3.13.1(b)), we conclude that the polarized signal measured by the detector
in the presence of the particle is

),,ˆ(∆),(),ˆ(∆),(∆∆ ebb ωΩωωΩωΩ TTTS rr ΚIΚI +−

),(),ˆ,ˆ(ˆd∆ b
4  

ωωΩ
π

TIZ rrr ′′+     (3.13.5)

(see Eqs. (3.8.5b) and (3.7.8)). However, in thermal equilibrium the presence of the
particle does not change the distribution of radiation. Therefore, we can equate ex-
pressions (3.13.3) and (3.13.5) and finally derive for the ith component of eΚ

),ˆ(),(),,ˆ( 1be ωΚωωΚ rr ii TIT =

      .4...,,1        ,),ˆ,ˆ(ˆd),( 1
4  

b =′′− iZTI i ωω
π

rrr       (3.13.6)

This important relation expresses the emission Stokes column vector in terms of the
leftmost columns of the extinction and phase matrices and the Planck energy distribu-
tion.

Although our derivation assumed that the particle was in thermal equilibrium with
the surrounding radiation field, emissivity is a property of the particle only. There-
fore, Eq. (3.13.6) is valid for any particle, in equilibrium or in nonequilibrium.

3.14 Historical notes and further reading

Important early contributions to the subject of far-field electromagnetic scattering
were made by Silver (1949) and Müller (1969). Formal mathematical aspects of the
electromagnetic scattering theory, including basic existence and uniqueness theorems,
are discussed in Müller (1969), Colton and Kress (1998), Doicu et al. (2000), and
Pike and Sabatier (2001).
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Chapter 4

Scattering by a fixed multi-particle group

The formalism described in the preceding section equally applies to a scatterer in the
form of a single body and to a fixed multi-particle group. However, when the scatter-
ing object is a cluster consisting of touching and/or separated distinct components
then it is often convenient to use an alternative formalism in which the total scattered
electric field is explicitly represented as a vector superposition of the partial fields
scattered by the cluster components. This approach is based on the system of integral
so-called Foldy–Lax equations which follow directly from the macroscopic Maxwell
equations and rigorously describe the scattered electric field at any point in space. In
this chapter, we will derive both the exact form of the Foldy–Lax equations and an
approximate far-field version. The latter applies to a group of widely separated parti-
cles and offers significant simplifications essential for a microphysical derivation of
the radiative transfer equation.

4.1 Vector form of the Foldy–Lax equations

Consider electromagnetic scattering by a fixed group of N finite particles collectively
occupying the interior region

,     
1

INT i

N

i
VV

=
= � (4.1.1)

where iV  is the (bounded) volume occupied by the ith particle (Fig. 4.1.1). As before,
we assume that the particles are imbedded in an infinite, homogeneous, linear, iso-
tropic, and nonabsorbing medium. Repeating the derivation of Section 3.1, we arrive
at a similar volume integral equation describing the electric field everywhere in space:
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where the integration is performed over the entire space, the potential function )(rU
is given by
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and )(riU  is the ith-particle potential function. The latter is given by
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where

12 )(    )( kk ii rr =m (4.1.5)

is the refractive index of particle i relative to that of the host medium. All position
vectors originate at the origin O of an arbitrarily chosen laboratory coordinate system.

We will now show that the solution of Eq. (4.1.2) everywhere in space can be ex-
pressed as
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where the electric field )(rEi  “exciting” particle i is given by

),()(    )( exc

1)(

inc rErErE ij

N

ij
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+=      (4.1.7)

O
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N – 1

N
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Figure 4.1.1.  Scattering by a fixed group of N finite particles.
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the )(exc rEij  are partial exciting fields given by

,        ),(),(d),(d    )(
    

exc
ijj

VV
ij VTG

jj

∈′′⋅′′′′′⋅′′= rrErrrrrrrE
��

     (4.1.8)

and iT
�

 is the ith-particle dyadic transition operator with respect to the laboratory co-
ordinate system and satisfies the following Lippmann–Schwinger equation:
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iii VTGUIUT
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(4.1.9)

We first introduce the ith potential dyadic centered at the origin of the laboratory ref-
erence frame,

,)(δ)(    ),( IUU ii
��

rrrrr ′−=′           (4.1.10)

and rewrite Eqs. (4.1.2) and (4.1.6)–(4.1.9) in the following operator form:

,ˆˆ    inc EUGEE +=                (4.1.11)
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,ˆˆˆˆ  ˆ
iiii TGUUT +=           (4.1.14)

where
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=           (4.1.15)

and

).(),(d    ˆ rErrr ′⋅′′= BEB
�

          (4.1.16)

Note that the ordering of operators in Eqs. (4.1.11)–(4.1.14) is important and cannot
be changed at will. Equations (4.1.15) and (4.1.14) yield
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1)( =≠
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    .ˆˆˆˆˆ  
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ii TGUUT
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+−=           (4.1.17)

Let us now evaluate the right-hand side of Eq. (4.1.11). Substituting sequentially Eqs.
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(4.1.12), (4.1.17), and (4.1.13) and then again Eq. (4.1.12) gives
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Thus, the substitution of Eqs. (4.1.12)–(4.1.14) into the right-hand side of Eq. (4.1.11)
yields the left-hand side, which proves that Eqs. (4.1.6)–(4.1.8) indeed give the solu-
tion of the volume integral equation (4.1.2) (Prishivalko et al., 1984).

Equations (4.1.6)–(4.1.8) represent the vector form of the so-called Foldy–Lax
equations (Foldy, 1945; Lax, 1951). They follow directly from the Maxwell equations
and rigorously describe the process of multiple scattering by a fixed group of N parti-
cles. Indeed, Eq. (4.1.6) expresses the total field everywhere in space in terms of the
vector sum of the incident field and the partial fields generated by each particle in
response to the corresponding exciting fields, whereas Eqs. (4.1.7) and (4.1.8) show
that the field exciting each particle consists of the incident field and the fields gener-
ated by all other particles. Importantly, iT

�

 is the dyadic transition operator of particle
i in the absence of all other particles (cf. Eqs. (3.1.24) and (4.1.9)).

4.2 Far-field version of the vector Foldy–Lax equations

Although the Foldy–Lax equations can be solved numerically in order to compute the
electric field scattered by a finite cluster consisting of arbitrarily positioned compo-
nents (Tsang et al., 2001), the solution becomes increasingly problematic and eventu-
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ally impracticable with increasing number of cluster components and/or their sizes
relative to the wavelength. To make the problem more manageable, we will often
assume that:

● The particles forming the group are separated widely enough that each of
them is located in the far-field zones of all the other particles.

● The observation point is located in the far-field zone of any particle forming
the group.

These approximations lead to a considerable simplification of the Foldy–Lax equa-
tions and will eventually enable us to derive the RTE.

Indeed, according to Eqs. (3.1.23), (3.2.16), and (4.1.8), the contribution of the jth
particle to the field exciting the ith particle in Eq. (4.1.7) can now be represented as a
simple outgoing spherical wave centered at the origin of particle j:

)(exc rEij  ≈ )ˆ()( 1 jijjrG rE      (4.2.1a)

     ≈ .        ),ˆexp(i)ˆiexp( 11 iijijiij Vkk ∈⋅⋅− rrRERR     (4.2.1b)

Here,

,)iexp(    )( 1

r
rkrG = (4.2.2)

,0  ˆ        ),ˆ()(  1 =⋅= ijijijijijij RG REREE (4.2.3)
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||   iijjr RrR −+=  ≈ ,
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||)(ˆ
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ij
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iijij R

R RrRrR −+−⋅+ (4.2.5)

and the vectors r, rj, Ri, Rj, and Rij are shown in Fig. 4.2.1(a). According to the re-
sults of Section 3.2, Eq. (4.2.1a) is valid provided that any point inside particle i is
located in the far-field zone of particle j:

)(1 jiij aaRk −− � 1,      iij aR − � ,ja       iij aR − � ,
2

2
1 jak

where ia  and ja  are the radii of the smallest circumscribing spheres of particles i
and j, respectively. Equation (4.2.1b) follows from similar criteria:

ijRk1 � 1,      ijR � ,|| iRr −       ijR � .
2

|| 2
1 ik Rr − (4.2.6)

Note that we use a lower case bold letter to denote a vector ending at an observation
point, a capital bold letter to denote a vector ending at a particle origin, and a caret
above a vector to denote a unit vector in the corresponding direction.

Obviously, Eij is the partial exciting field at the origin of the ith particle (i.e., at
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)iRr =  generated by the jth particle. Thus, Eqs. (4.1.7) and (4.2.1b) show that each
particle is excited by the external field and the superposition of locally plane waves
with amplitudes ijiijk ERR )ˆiexp( 1 ⋅−  and propagation directions :ˆ

ijR

)(rEi  ≈ )ˆiexp( 1
inc
0 rsE ⋅k

 ,        ),ˆexp(i)ˆiexp( 11

1)(

iijijiij

N

ij

Vkk ∈⋅⋅−+
=≠

rrRERR (4.2.7)

where we have assumed that the external incident field is a plane electromagnetic
wave:
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Figure 4.2.1.  Scattering by widely separated particles. The local origins iO  and jO  are
chosen arbitrarily inside particles i and j, respectively.
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According to Eq. (3.3.2), the outgoing spherical wave generated by the jth particle
in response to a plane-wave excitation of the form )ˆiexp( 1

inc
0 jk rsE ⋅  is given by

,)ˆ,ˆ()( inc
0Esr ⋅jjj ArG

�

where jr  originates at jO  and )ˆ,ˆ( sr jjA
�

 is the jth particle scattering dyadic centered
at .jO  To exploit this fact, we must rewrite Eq. (4.2.7) for particle j with respect to
the jth-particle coordinate system centered at ,jO  Fig. 4.2.1(a). Taking into account
that jj Rrr +=     yields
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The electric field at iO  generated in response to this excitation is simply
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          (4.2.10)

Equating Eq. (4.2.10) with the right-hand side of Eq. (4.2.1b) evaluated for iRr =
finally yields a system of linear algebraic equations for determining the partial excit-
ing fields :ijE
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This system is much simpler than the original system of integral equations (4.1.7)–
(4.1.8) and can be readily solved on a computer provided that N is not too large.

After the system (4.2.11) has been solved, one can find the electric field exciting
each particle and the total field. Indeed, Eq. (4.2.7) gives for a point :iV∈′′r

)(rE ′′i  ≈ iiijij
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1)(

1
inc Σ

         (4.2.12)

(see Fig. 4.2.1(b)), which is a vector superposition of plane waves. Substituting
0r =′′i  in Eq. (4.2.12) gives a simple formula for the exiting field at the origin of

particle i:

.)(    )( Σ
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N

ij

iii ERERE
=≠

+=           (4.2.13)

Finally, substituting Eq. (4.2.12) in Eq. (4.1.6) and recalling the mathematical form of
the far-field response of a particle to a plane-wave excitation, we derive for the total



Chapter 4122

electric field:
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where the observation point r, Fig. 4.2.1(b), is assumed to be in the far-field zone of
any particle forming the group:
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for any i.
Equation (4.2.14) can also be re-written as follows:
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These formulas show that the total field at any point located sufficiently far from any
particle in the group is the superposition of the incident plane wave and N spherical
waves generated by the N particles.
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Chapter 5

Statistical averaging

Most of our discussion of electromagnetic scattering in Chapters 3 and 4 was based
on the assumption that the position and orientation of the scattering object are fixed.
Although there are practical circumstances in which this assumption is true, more
often than not the scatterer changes its position and orientation randomly during the
time necessary to take a measurement. Moreover, one usually has to deal with a scat-
tering object in the form of a group of many discrete particles randomly rotating and
moving relative to each other. Important examples of such “stochastic” scattering
objects are clouds consisting of water droplets and/or ice crystals and plumes of aero-
sol particles.

At any given moment in time, a cloud can be represented by a fixed static group
of discrete particles. However, any measurement takes a finite amount of time during
which the cloud goes through an infinite succession of varying discrete states. Al-
though the result of the measurement can be modeled numerically by computing the
scattered signal for many different discrete cloud states and then taking the average, a
more efficient approach is to use methods of mathematical statistics and attempt to
derive the average analytically. Specifically, all further discussion in this book will be
based on the following two fundamental premises:

● The scattering object can be adequately characterized at any moment in time
by a finite set of physical parameters.

● The scattering object is sufficiently variable in time and the time interval nec-
essary to take a measurement is sufficiently long that averaging the scattering
signal over this interval is essentially equivalent to averaging the signal over
an appropriate analytical probability distribution of the physical parameters
characterizing the scattering object.

According to the discussion in Section 1.5, the second premise is equivalent to the
ergodic hypothesis and means that averaging over time for one specific realization of
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a random scattering process is equivalent to ensemble averaging, Eq. (1.5.3).
The specific aim of this chapter is to introduce the concepts of mathematical sta-

tistics necessary for the following discussion of electromagnetic scattering by a group
of randomly distributed particles. We will also give examples of analytical distribu-
tion functions frequently used to describe statistical characteristics of particles en-
countered in natural and artificial environments.

5.1 Statistical averages

It is convenient to describe a large group of N arbitrarily oriented and randomly dis-
tributed particles using the probability density function ...; ; , ...;;,( 11 iip ξξ RR

) , NN ξR defined with respect to a common laboratory coordinate system. The prob-
ability of finding the first particle in the volume element 1dR  centered at 1R  and
with its state in the region 1dξ  centered at ,1ξ …, the ith particle in the volume ele-
ment iRd  centered at iR  and with its state in the region iξd  centered at ,iξ …, and
the Nth particle in the volume element NRd  centered at NR  and with its state in the
region Nξd  centered at Nξ  is given by

.dd) , ...; ; ,(
1

11 ii

N

i

NNp ξξξ RRR
=

(5.1.1)

The state of a particle can collectively indicate its size, refractive index, shape, orien-
tation, etc. Hence,
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The probability density function is normalized to unity:

,1) , ...; ; ,(dd 11

1

=
=

NNii

N

i

p ξξξ RRR (5.1.3)

where the integration is performed over the entire range of particle positions and
states. The statistical average of a random function f depending on all N particles is
given by
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If the position and state of each particle are independent of those of all other parti-
cles then
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= (5.1.5)
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This is a good approximation when particles are sparsely distributed so that the finite
size of the particles can be neglected. In this case the effect of size appears only in the
single-particle scattering and absorption characteristics. Obviously,

.1) ,(dd =iiiii p ξξ RR (5.1.6)

If, furthermore, the state of each particle is independent of its position, then

)()(),( iiiiiii ppp ξξ ξRR R= (5.1.7)

with

,1)(d =iii p RR R (5.1.8)

.1)(d =iii p ξξ ξ (5.1.9)

Equation (5.1.7) allows one to separate the configurational averaging (i.e., averaging
over the particle positions) from the averaging over the particle states.

Finally, assuming that all particles have the same statistical characteristics, we
have

),()() ,() ,( iiiiiii pppp ξξξ ξRRR R=≡           (5.1.10)
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.1)(d =ξξ ξp           (5.1.13)

The interpretation of the probability density function )(RRp  is simple:

R
RRRR

at  centered                     
 d lume within voparticle a finding ofy probabilit    d)( =p

   
particles ofnumber  total

 d within particles ofnumber   R=

   ,d)(  0

N
n RR=               (5.1.14)

where )(0 Rn  is the local particle number density defined as the number of particles
per unit volume in the vicinity of .R  Thus,

.)(    )( 0

N
np RRR =           (5.1.15)
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5.2 Configurational averaging

In what follows, we will often assume that particles forming a multi-particle group are
confined to a finite bounded volume of space V. Furthermore, we will always assume
that the spatial distribution of the N particles throughout the volume V is statistically
uniform. Then
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5.3 Averaging over particle states

The computation of averages over the particle states is, in principle, rather straight-
forward. The orientation of a particle with respect to the laboratory coordinate system
can be specified by affixing a Cartesian coordinate system to the particle and speci-
fying the Euler angles ,α  ,β  and γ  that transform the laboratory coordinate system
into the particle coordinate system (see Appendix C). If a multi-particle group con-
sists, for example, of homogeneous ellipsoids with semi-axes ], ,[ maxmin aaa ∈  ∈b

], ,[ maxmin bb  and ] ,[ maxmin ccc ∈  and the same refractive index then the ensemble
average of a scattering or absorption characteristic ς  per particle is given by
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where the probability density function ),,;,,( cbap γβαξ  satisfies the following
normalization condition:
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The integrals in Eq. (5.3.1) are usually evaluated numerically by using appropriate
quadrature formulas (see Appendix D). Some theoretical techniques (e.g., the T-
matrix method described in Chapter 5 of MTL) allow analytical averaging over parti-
cle orientations, thereby bypassing time-consuming numerical integration over the
Euler angles.
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It is often assumed that the shape/size and orientation distributions are statistically
independent. The total probability density function can then be simplified by repre-
senting it as a product of two functions, one of which, ),,,(o γβαp  describes the dis-
tribution of particle orientations, and the other one, ),,,(s cbap  describes the particle
shape/size distribution:

), , ,() , ,() , , ; , ,( so cbappcbap γβαγβαξ = (5.3.3)

each normalized to unity:
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As a consequence, the problems of computing shape/size and orientation averages are
separated.

Similarly, it is often convenient to separate averaging over shapes and sizes by
assuming that particle shapes and sizes are statistically independent. For example, the
shape of a spheroidal particle can be specified by its aspect ratio ε  (ratio of the larg-
est to the smallest axes) along with the designation of either prolate or oblate, whereas
the particle size can be specified by an equivalent-sphere radius r. Then the shape/size
probability density function ),(s rp ε  can be represented as a product

),()() ,(s rnprp εε = (5.3.6)

where )(εp  describes the distribution of spheroid aspect ratios and )(rn  is the distri-
bution of equivalent-sphere radii. Again, both )(εp  and )(rn  are normalized to
unity: 
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In the absence of external forces such as magnetic, electrostatic, or aerodynamical
forces, all orientations of a nonspherical particle are equiprobable. In this practically im-
portant case of randomly oriented particles, the orientation distribution function is uni-
form with respect to the Euler angles of rotation, and we have

.
8

1) , ,( 2randomo, π
γβα =p (5.3.9)

An external force can make the orientation distribution axially symmetric with the
axis of symmetry given by the direction of the force. In this case it is convenient to
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choose the laboratory reference frame with the z-axis along the external force direc-
tion so that the orientation distribution is uniform with respect to the Euler angles α
and :γ

).(
4

1) , ,( o2axialo, β
π

γβα pp =           (5.3.10)

Particular details of the particle shape can also simplify the orientation distribution
function.  For example, for rotationally symmetric bodies it is convenient to direct the
z-axis of the particle reference frame along the axis of rotation, in which case the ori-
entation distribution function in the laboratory reference frame becomes independent
of the Euler angle :γ

). ,(
2
1) , ,( oo βα
π

γβα pp =           (5.3.11)

Natural size distributions are often approximated using convenient analytical
functions. The analytical size distribution functions used most typically are the fol-
lowing:

● The modified gamma distribution
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● The log normal distribution
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● The power law distribution
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● The gamma distribution
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● The modified power law distribution
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● The modified bimodal log normal distribution
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The constant for each size distribution is chosen such that the size distribution satis-
fies the standard normalization of Eq. (5.3.8).

Implicitly, particle radii in the modified gamma, log normal, gamma, and modi-
fied bimodal log normal distributions extend to infinity. However, a finite maxr  must
be chosen in actual computer calculations. There are two different practical interpre-
tations of a truncated size distribution. The first one assumes that maxr  is increased
iteratively until the scattering and absorption characteristics of the size distribution
converge within a prescribed numerical accuracy. In this case the converged truncated
size distribution is numerically equivalent to the distribution with =maxr ∞. In the
second interpretation, the truncated distribution with a specified maxr  can be consid-
ered as a specific size distribution with scattering and absorption characteristics dis-
tinctly different from those for the distribution with =maxr ∞. Similar considerations
apply to the parameter ,minr  whose implicit value for the modified gamma, log nor-
mal, gamma, and modified bimodal log normal distributions is zero, but in practice
can be any number smaller than .maxr  In what follows, we always adopt the first in-
terpretation of a truncated size distribution.

Two important integral characteristics of a size distribution are the effective radius
effr  and effective variance effv  defined by
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is the average area of the geometric projection per particle. The effr  is simply the
projected-area-weighted mean radius, whereas the dimensionless effective variance
provides a measure of the width of the size distribution. Hansen and Travis (1974)
and Mishchenko and Travis (1994a) have shown that different moderately broad size
distributions that have the same values of effr  and effv  can be expected to have simi-
lar dimensionless scattering and absorption characteristics.

Note that for the gamma distribution with 0min =r  and =maxr ∞, a and b coincide
with effr  and ,effv  respectively. For the other size distributions with specific values of
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minr  and maxr  the effective radius and effective variance must be determined either
analytically or numerically.

As an example, Fig. 5.3.1 shows three kinds of size distribution with the same
values of the effective radius and the effective variance. It is rather obvious that the
modified power law distribution has an important practical advantage in that its
maximal radius maxr  is finite by definition and can be significantly smaller than the
corresponding convergent maximal radii for the “equivalent” log normal and gamma
distributions.

0.1 1 10
10−4

10−3

10−2

0.1

1

10

r (micrometers)

n(r)

Log normal
Gamma
Modified power law

Figure 5.3.1.  Log normal, gamma, and modified power law size distributions with =effr
µm 5.1  and .1.0eff =v  The power exponent of the modified power law size distribution is

.3    −=α
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Chapter 6

Scattering by a single random particle

The simplest kind of a stochastic scattering object is a single particle that moves, ro-
tates, and perhaps changes its size and/or shape during the measurement. A typical
example is the scattering by a single particle suspended in air or vacuum with one of
the existing levitation techniques (Davis and Schweiger, 2002). The particle position
within the trap volume of the levitator as well as the particle orientation are never
perfectly fixed, and the particle can undergo random or periodic movements and can
spin during the time interval necessary to take a measurement. The particle may also
change its size and shape owing to evaporation, sublimation, condensation, or melt-
ing. The shape of a liquid particle can also change owing to surface oscillations.

The results of Sections 3.2 and 3.6–3.9 are not applicable directly to electromag-
netic scattering by such a “random” particle. However, we will show in this chapter
that under certain assumptions one can still use most of those results in combination
with the statistical averaging concepts introduced in Chapter 5.

The discussion in this chapter is explicitly based on the assumption that the scat-
tering object is illuminated by a plane electromagnetic wave. However, the results can
be generalized easily to cover the more general cases of illumination considered in
Sections 3.10–3.12.

6.1 Scattering in the far-field zone of the trap volume

To model electromagnetic scattering by a random particle trapped in a finite volume,
let us assume that at any moment during the measurement the particle can be any-
where inside a small volume V with radius ,aRV ≥  where a is the radius of the
smallest circumscribing sphere of the scatterer (see Fig. 6.1.1). The geometrical cen-
ter of the volume serves as the origin O of the laboratory coordinate system. Let the
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electric field of the incident plane wave be given by
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inc rnErE ⋅= k           (6.1.1)

where r is the position vector originating at O, and let r′  be the position vector of the
same observation point but originating at the particle origin O′  (Fig. 6.1.2). Since
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Figure 6.1.1.  Scattering by a single random particle.
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Figure 6.1.2.  The origin of the particle reference frame does not coincide with that of the
laboratory reference frame.
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,Rrr +′=  where R connects the origin of the laboratory coordinate system with the
particle origin, the incident electric field at the observation point can also be written
as follows:

).ˆiexp()ˆiexp(    )( inc
1

inc
1

inc
0

inc RnrnErE ⋅′⋅= kk      (6.1.2)

We know that the outgoing spherical wave generated by the particle in response to a
plane-wave excitation of the form )ˆiexp( inc

1
inc
0 rnE ′⋅k  in the far-field zone is given

by

,)ˆ,ˆ()exp(i inc
0

inc1 Enr ⋅′
′

′
A

r
rk �

where r′′=′ rr̂  is the scattering direction centered at the particle and )ˆ,ˆ( incnr′A
�

 is
the scattering dyadic with respect to the particle reference frame. Therefore, the inci-
dent field (6.1.2) results in the following scattered field:

. )ˆ,ˆ()ˆexp(i )exp(i)( inc
0

incinc
1

1sca EnrRnrE ⋅′⋅
′

′
= Ak

r
rk �

     (6.1.3)

This formula is valid provided that the following far-field criteria are satisfied (see
Eqs. (3.2.17)–(3.2.19)):

)(1 ark −′  � 1,                   (6.1.4)

r′  � a,               (6.1.5)

r′  � .
2

2
1ak             (6.1.6)

Using the law of cosines,

,2222 Rr ⋅−+=′ Rrr (6.1.7)

we finally obtain

, );ˆ,ˆ( )exp(i)( inc
0

inc1sca ERnrrE ⋅= A
r

rk �

(6.1.8)

where rrr =ˆ  is the scattering direction centered at the origin of the laboratory co-
ordinate system,

)ˆ,ˆ()exp(i);ˆ,ˆ( incinc nrRnr AA
��

∆= (6.1.9)

is the scattering dyadic of the particle with respect to the laboratory coordinate sys-
tem,

,)ˆˆ( inc
1 Rrn ⋅−= k∆     (6.1.10)

and we have further assumed that

r � R,     (6.1.11)
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r
Rk

2

2
1 � 1,          (6.1.12)

and

)ˆ,ˆ( incnr′A
�

 ≈ ).ˆ,ˆ( incnrA
�

    (6.1.13)

As should have been expected,

).ˆ,ˆ();ˆ,ˆ( incinc nr0nr AA
��

=     (6.1.14)

Equation (6.1.8) describes a transverse outgoing spherical wave centered at the
origin of the laboratory reference frame. This allows us to proceed in exactly the same
way as we did in Chapter 3. Specifically, exploiting the transverse character of the
wave yields

, );ˆ,ˆ( )exp(i)( inc
0

inc1sca ESE ⋅= Rnrr
r

rk     (6.1.15)

where we have used the notation of Eq. (3.3.7), and the amplitude scattering matrix of
the particle with respect to the laboratory coordinate system, ),;ˆ,ˆ( inc RnrS  is ex-
pressed in terms of that with respect to the particle coordinate system, ),ˆ,ˆ( incnrS  as
follows:

).ˆ,ˆ()exp(i);ˆ,ˆ( incinc nrRnr SS ∆=     (6.1.16)

Of course, Eq. (6.1.16) implies that the spatial orientations of the two coordinate sys-
tems are the same. As before,

).ˆ,ˆ();ˆ,ˆ( incinc nr0nr SS =     (6.1.17)

Substituting Eq. (6.1.16) in Eqs. (3.7.11)–(3.7.26) and Eqs. (3.8.8)–(3.8.14) shows
that irrespective of the particle position within the trap volume, the phase and extinc-
tion matrices of the particle with respect to the laboratory reference frame remain the
same and are equal to those with respect to the particle reference frame:

),ˆ,ˆ();ˆ,ˆ();ˆ,ˆ( incincinc nr0nrRnr ZZZ =≡         (6.1.18)

).ˆ();ˆ();ˆ( incincinc n0nRn KKK =≡     (6.1.19)

Indeed, the factor )exp(i∆  is common to all elements of the amplitude scattering ma-
trix centered at the origin of the laboratory reference frame and disappears when mul-
tiplied by its complex-conjugate counterpart, whereas the phase ∆  vanishes identi-
cally in the exact forward-scattering direction. It is straightforward to verify that all
the optical cross sections and efficiency factors, the single-scattering albedo, the
phase function, and the asymmetry parameter are also invariant with respect to
changing R.

This important result indicates that to model the cumulative signal measured by a
distant detector over a finite time interval, one may use Eqs. (3.7.6), (3.7.8), and
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(3.8.5b), in which Drr =  is the distance from the origin of the laboratory reference
frame to the detector (Fig. 6.1.1), and the phase and extinction matrices are obtained
by averaging the matrices )ˆ,ˆ( incnrZ  and )ˆ( incnK  over particle states:

,)ˆ,ˆ();ˆ,ˆ( inc
,

inc
ξξ ��=�� nrRnr R ZZ         (6.1.20)

.)ˆ();ˆ( inc
,

inc
ξξ ��=�� nRn R KK     (6.1.21)

The averaging over particle states incorporates the possible effects of variable particle
orientation, size, and/or shape during the measurement. Thus, a moving particle can
be effectively replaced by a particle fixed at the origin of the laboratory coordinate
system. The latter is still partially random in that it may change its orientation, size,
and/or shape.

Let us now analyze the conditions of applicability of Eqs. (6.1.20) and (6.1.21).
First, the very concept of using a detector of electromagnetic radiation implies that the
following criteria, adapted from Eqs. (3.6.1), (3.6.19), and (3.6.21), must be satisfied:

,∆
4

∆
2

D

2

2
D

Ωπ <=
r
D

r
S             (6.1.22)

D  � ,2 VR               (6.1.23)

Dr  � ,1

π
aDk          (6.1.24)

where D is the diameter of the sensitive surface of the detector, S∆  is its area, and
Ω∆  is the detector angular aperture. As in Section 3.6, the criterion (6.1.23) applies

only to the detector facing the incident light. It reflects the fact that the interaction of
the incident plane wave and the scattered spherical wave occurs along the line drawn
through the particle origin in the direction of the unit vector incn̂  (Fig. 6.1.3(a)). In
order to capture this interaction irrespective of the particle position within the trap
volume, the sensitive area of the detector centered at O must be sufficiently large to
always contain the geometrical shadow cast by the particle (Fig. 6.1.3(b)):

.∆  shadow  Particle S∈     (6.1.25)

Second, the inequalities (6.1.4)–(6.1.6), (6.1.11), and (6.1.12) must be valid for
any position of the particle within the volume element V. This yields

)( D1 VRrk −  � 1,                   (6.1.26)

aRr V +−D � a,               (6.1.27)

aRr V +−D � ,
2

2
1ak             (6.1.28)

Dr  � ,aRV −     (6.1.29)

Dr  � .
2

)( 2
1 aRk V −          (6.1.30)
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It is obvious that if VR � a  then the criteria (6.1.29) and (6.1.30) are stronger
than the criteria (6.1.27) and (6.1.28), respectively, so that the latter can be neglected.
Furthermore, comparison with Eqs. (3.2.17)–(3.2.19) shows that the criteria (6.1.26),
(6.1.29), and (6.1.30) require the detector to be located in the far-field zone of the
entire trap volume.

Finally, the approximate equality (6.1.13) used to derive Eq. (6.1.8) means that the
angular pattern of light scattering by the particle is assumed to change insignificantly
over the range of scattering directions equal to the angular size of the trap volume as
viewed from the detector. Therefore, it follows from the discussion preceding Eq.
(3.6.21) that the distance Dr  from the volume element to the detector must obey the
following additional inequality:

Dr  � .)(2 1

π
akaRV −          (6.1.31)

For a particle with size parameter ak1  significantly exceeding unity, the condition
(6.1.31) becomes much more restrictive than the condition (6.1.29).

6.2  “Near-field” scattering

The approach described in the preceding section is based on the assumption that the
detector is positioned so far from the origin of the laboratory reference frame O that
for any position of the particle within the volume V the scattered wavefront at the
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′ incn̂

Incident plane
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Scattered spherical
wave

(a)

(b)
Detector surface

Figure 6.1.3.  The geometrical shadow cast by the particle must be within the sensitive area of
the detector facing the incident light.
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detector is indistinguishable from that created by the particle centered at the origin of
the laboratory reference frame. The advantage of this far-field approach is that it al-
lows one to conveniently use the formalism of Chapter 3 without any change by in-
voking the concepts of O-centered phase and extinction matrices. The price that one
has to pay for this simplicity is the condition (6.1.30), which can become very oner-
ous if the radius of the volume element RV significantly exceeds the wavelength.
Therefore, it is desirable to develop an alternative “near-field” approach that would
not require the far-field condition (6.1.30).

Let us first rewrite Eq. (6.1.3) in the form

, )ˆ,ˆ( )exp(i)( inc
0

inc1sca
REnrrE ⋅′

′
′

=′ A
r

rk �

     (6.2.1)

where

.)ˆexp(i inc
0

inc
1

inc
0 ERnE R ⋅= k      (6.2.2)

It is clear that Eq. (6.2.1) describes far-field scattering with respect to the particle ref-
erence frame. The only difference from the case studied in Chapter 3 is that the origi-
nal amplitude of the electric (and thus the magnetic) field is multiplied by the expo-
nential factor ).ˆexp(i inc

1 Rn ⋅k  It is easy to see, however, that this factor has no effect
on the final formulas of Sections 3.6–3.9 because it always gets multiplied by its own
complex conjugate value and thereby disappears.

This is a very important result which shows that one can use the formulas of Sec-
tions 3.6–3.9 without any modification to describe the response of a detector with its
sensitive surface centered at and normal to the position vector r′  for any value of the
particle position vector R (Fig. 6.2.1).

We will now use this result to quantify the response of the original detector with
its sensitive surface S∆  centered on and normal to the unit vector r̂  originating at O
(Figs. 6.1.1 and 6.2.2). The unit vector r′ˆ  originating at O′  still points towards the
center of the sensitive surface but is not normal to it. As a consequence, the particle
sees an “effective” detector with a “sensitive surface” S ′∆  centered at and normal to
r′ˆ  such that SS ∆∆ <′  (Fig. 6.2.2). Let us, however, assume that r′ˆ  and r̂  are close
enough that the approximate equality (6.1.13) holds and that

S ′∆  ≈ .∆S (6.2.3)

Furthermore, we assume that

Dr′  ≈ ,Dr (6.2.4)

where Dr′  is the distance from O′  to the center of the detector sensitive surface. It
then becomes clear from the discussion in Sections 3.3 and 3.6 that if the detector is
not facing the incident wave then its instantaneous response can be accurately de-
scribed by Eqs. (3.7.6) and (3.7.8) in which Drr =  and the phase matrix is that with
respect to the particle reference frame.
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To describe the response of the O-centered detector normal to the incidence direc-
tion )ˆˆ( incnr =  and provide for the possibility of a meaningful measurement of ex-
tinction, we further require that for any location of the particle within the volume
element V, the geometrical shadow cast by the particle be within the sensitive surface
of the detector (Fig. 6.1.3(b) and Eq. (6.1.25)). Then it follows from Sections 3.3 and
3.6 that the instantaneous response of the detector is accurately described by Eq.
(3.8.5b), in which the extinction matrix is that with respect to the particle reference
frame. The corresponding time-averaged detector responses are described by the en-
semble averaged phase and extinction matrices ξ�� )ˆ,ˆ( incnrZ  and ,)ˆ( inc

ξ�� nK  respec-
tively.

This is substantially the same result as that obtained in the preceding section.
However, the conditions of applicability are now somewhat different. Indeed, it is
easy to see that the inequalities (6.1.22)–(6.1.29) and (6.1.31) must still apply, but
they must be supplemented by a new condition reflecting the fact that the observation
point may now be so close to the origin of the laboratory reference frame that the light
scattered by a particle located at the boundary of the trap volume can come to the

O

O

R

r ′

′

S

Figure 6.2.1.  Scattering with respect to the particle origin.
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observation point from a direction distinctly different from that originating at O. We
must still require that all the light scattered by this off-centered particle and impinging
on the detector surface be detected, which means that the entire trap volume as
viewed from the detector must be within the detector angular aperture:

.∆
)(

2
D

2
2
1

Ω
π

<
−+

r
aRD V               (6.2.5)

On the other hand, the potentially most demanding condition of the far-field ap-
proach, Eq. (6.1.30), is now excluded. This means that the detector is allowed to be in
the near-field zone of the volume element V, which justifies the title of this section.
The detector must still be sufficiently distant in order to be in the far-field zone of the
particle irrespective of its location within V (see Eqs. (6.1.26)–(6.1.28)).

Thus the net difference between the far-field and near-field approaches is that the
conditions (6.1.22) and (6.1.30) are replaced by the condition (6.2.5). The relative
importance of these conditions may vary depending on the specific measurement
situation. Obviously, to apply Eqs. (6.1.20) and (6.1.21) one should verify whether:

● The conditions (6.1.23)–(6.1.29) and (6.1.31) are met and
● Either the combination of the inequalities (6.1.22) and (6.1.30) or the ine-

quality (6.2.5) is satisfied.
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Figure 6.2.2.  Scattering with respect to the origin of the laboratory reference frame.
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Chapter 7

Single scattering by a small random particle group

The next problem in order of increasing complexity is electromagnetic scattering by a
sparse group of particles randomly distributed throughout a small element of space.
The concept of single scattering of light by a “differential” volume element has been
central to the phenomenological theory of radiative transfer. With the development of
the microphysical approach to radiative transfer (Chapter 8), the differential volume
element has lost its long-cherished role as an elementary scattering unit in a macro-
scopic medium composed of a very large number of randomly positioned discrete
particles. However, the concept of a small volume element filled with sparsely and
randomly positioned particles remains a useful modeling tool in practical applications
in which:

● The scattering medium is observed from a distance much greater than its
maximal linear dimension.

● The total number of particles in the medium is insufficiently large to cause a
significant multiple-scattering contribution to the total radiation leaving the
medium in all directions.

A prime example of such applications is the analysis and interpretation of laboratory
measurements of light scattering by tenuous collections of natural and artificial small
particles (Section 9.3). Hence, the objective of this chapter is to discuss how one can
model theoretically the response of a polarization-sensitive well-collimated detector
placed at a large distance from a small volume element filled with randomly and
sparsely distributed discrete scatterers (Mishchenko et al., 2004b).

By analogy with the previous chapter, we will assume that the incident light is a
plane electromagnetic wave. However, the results can be generalized easily to en-
compass the more general cases of illumination considered in Sections 3.10–3.12.
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7.1 Single-scattering approximation for a fixed group of
particles

We have seen in Section 4.1 that electromagnetic scattering by an arbitrary fixed
group of N finite particles (Fig. 4.1.1) is rigorously described by the vector form of
the Foldy–Lax equations (4.1.6)–(4.1.8). Let us now assume that the second term on
the right-hand side of Eq. (4.1.7) is small in comparison with the first term (specific
conditions under which this assumption holds will be discussed in Section 7.6). This
means that each particle is excited only by the external incident field, which is the gist
of the single-scattering approximation (SSA) for the fixed N-particle aggregate. We
then have instead of Eq. (4.1.6):

,        ,)(  )(    )( 3scainc ℜ∈+= rrErErE (7.1.1)

where the total scattered field is a vector sum of the partial scattered fields:

),()( sca
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sca rErE i
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i =

= (7.1.2)

).(),(d),(d)( inc

    

sca rErrrrrrrE ′′⋅′′′′′⋅′′= i
VV

i TG
ii

��

(7.1.3)

It is clear that each partial field is independent of the partial fields scattered by all
other particles forming the group (see Eq. (3.1.23)).

Let us choose the origin O of the laboratory coordinate system close to the geo-
metrical center of the group, illuminate the fixed N-particle group by a plane electro-
magnetic wave incident in the direction of the unit vector ,ŝ

,0ˆ        ,)ˆiexp()( inc
01

inc
0

inc =⋅⋅= sErsErE k (7.1.4)

assume that the observation point is located in the far-field zone of any particle
forming the group (Fig. 7.1.1), and recall Eqs. (3.3.1) and (3.3.2). The latter indicate
that the outgoing spherical wave generated by particle i in response to a plane-wave
excitation of the form )ˆiexp( 1

inc
0 ik rsE ⋅  in the far-field zone of this particle is given

by

,)ˆ ,ˆ()exp(i inc
0

1 Esr ⋅ii
i

i A
r

rk �

where ir  originates inside particle i (Fig. 7.1.1), )ˆ ,ˆ( sriiA
�

 is the ith particle scattering
dyadic centered at the particle origin, and iii rrr =ˆ  is the unit vector in the scatter-
ing direction. To make use of this fact, we must rewrite Eq. (7.1.4) in the following
form:

),ˆiexp()ˆiexp()( 11
inc
0

inc
ii kk RsrsErE ⋅⋅= (7.1.5)

where iR  connects the origin of the laboratory coordinate system with the origin of
particle i (Fig. 7.1.1). This yields
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.)ˆ ,ˆ( )exp(i )ˆiexp()( inc
0

1
1

sca EsrRsrE ⋅⋅= ii
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r
rkk

�

(7.1.6)

This formula is valid provided that the following inequalities hold for each particle of
the group:

)(1 ii ark −  � 1,                 (7.1.7)

ir  � ,ia             (7.1.8)

ir  � ,
2

2
1 iak           (7.1.9)

where ia  is the smallest circumscribing sphere of particle i (cf. Eqs. (3.2.17)–
(3.2.19)).

7.2 Far-field single-scattering approximation for a fixed
particle group

Assuming that the observation point is located so far from the center of the particle
group that  r  � iR  for any i yields

||  iir Rr −=

O

r

V iR

ir

Observation
point

Figure 7.1.1.  Far-field scattering by a group of particles occupying collectively a small
volume element V.
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Therefore,
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where

,)ˆˆ(1 ii k Rrs ⋅−=∆ (7.2.3)

and it is further assumed that
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1 iRk (7.2.4)

and

)ˆ ,ˆ( sriiA
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 ≈ )ˆ ,ˆ( sriA
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(7.2.5)

for any i. We can now rewrite Eq. (7.1.2) as
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0
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     (7.2.6)

where the scattering dyadic of the entire group is given by
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It is clear that Eq. (7.2.6) describes a transverse outgoing spherical wave centered
at O. Exploiting the transverse character of the wave yields

,)ˆ,ˆ( )exp(i    )( inc
0

1sca ESE ⋅= srr
r

rk      (7.2.8)

where we have used the notation of Eq. (3.3.7) and expressed the total amplitude ma-
trix of the group )ˆ,ˆ( srS  in terms of the partial amplitude matrices )ˆ,ˆ( sriS  centered
at the respective particle origins as follows:

).ˆ,ˆ()iexp(    )ˆ,ˆ(
1

srsr ii

N

i

SS ∆
=

=      (7.2.9)

This formula is based on the assumption that the orientations of the laboratory and
particle-centered reference frames are the same.

The approximate equality (7.2.5) used to derive Eq. (7.2.6) means that the dis-
tance r from the center of the particle group to the observation point must satisfy the
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inequality )2( 1 iakπ � rL 2  (cf. Eq. (6.1.31)), where L  is the maximal linear di-
mension of the volume element V occupied collectively by the group; we assume, for
simplicity, that 2L  is much greater than any .ia  Furthermore, the assumption r �

iR  leads to the inequality r � .2L  Thus, our derivation and discussion show that
the criteria of applicability of Eqs. (7.2.6)–(7.2.9) can be summarized as follows:

rk1  � 1,          (7.2.10)

r  � ,
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2
λ

iLa      for  i = 1, …, N,     (7.2.13)

where, as before, 11 2 kπλ =  is the wavelength in the surrounding medium.
Equations (7.2.6)–(7.2.9) imply that the entire particle group behaves like an ef-

fective point-like scatterer generating a unified outgoing spherical wave and charac-
terized by a cumulative scattering dyadic and a cumulative amplitude scattering ma-
trix. It is, therefore, not surprising that the inequalities (7.2.10)–(7.2.12) are essen-
tially equivalent to the criteria (3.2.17)–(3.2.19) of far-field scattering as applied to
the particle group as a whole. Hence, Eqs. (7.2.6)–(7.2.9) summarize what can be
called the far-field single-scattering approximation for the multi-particle group.

The critical advantage of the approximate formula (7.2.7) over the exact formula
(3.3.5) is that the former provides a much simpler way to compute the scattering dy-
adic of the multi-particle group provided that the individual scattering dyadics of the
component particles are known. Equation (7.2.9) can then be used to compute all ob-
servable scattering and absorption characteristics of the group introduced in Sections
3.6–3.9.

In particular, since the i∆  vanish in the exact forward-scattering direction =r̂(
),ŝ  substituting Eq. (7.2.9) in Eqs. (3.8.8)–(3.8.14) and Eq. (3.9.9) yields
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i
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=     (7.2.14)

.ext,
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i
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=

=     (7.2.15)

In other words, the extinction matrix and the extinction cross section of the fixed N-
particle group in the framework of the far-field SSA are obtained by adding the re-
spective optical characteristics of all the individual particles forming the group. One
can also substitute Eq. (7.2.9) in Eqs. (3.7.11)–(3.7.26) and derive the corresponding
formulas for the elements of the total Stokes phase matrix. However, we will not do
that explicitly but rather will derive, in the following section, a formula for the total
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phase matrix under additional simplifying assumptions.

7.3 Far-field uncorrelated single-scattering
approximation and modified uncorrelated
single-scattering approximation

Let us now make two further assumptions:

● The N particles filling the volume element V (Fig. 7.1.1) move during the
time necessary to take a measurement in such a way that their positions are
random and uncorrelated with each other.

● The criteria of validity of Eqs. (7.2.8) and (7.2.9) are satisfied at each moment
during the measurement.

Collectively, these assumptions define what can be called the far-field uncorrelated
single-scattering approximation (USSA) for a small volume element. Obviously,
these assumptions do not change Eqs. (7.2.14) and (7.2.15) since the latter are inde-
pendent of the specific particle positions at any moment during the measurement.
Therefore, Eqs. (7.2.14) and (7.2.15) are also the formulas for the time-averaged or,
equivalently, configuration-averaged total extinction matrix and extinction cross sec-
tion of the volume element:
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Our next step is to substitute Eq. (7.2.9) in Eqs. (3.7.11)–(3.7.26) and assume that
the randomness of particle positions during the measurement leads to the following
inequalities:

Rsrsr �−� ′
∗

′

=≠′=

)](iexp[)]ˆ,ˆ([)]ˆ,ˆ([ Re
1)(1

iipqikli

N

ii

N

i

∆∆SS

� ,)]ˆ,ˆ([)]ˆ,ˆ([ Re
1

∗

=

pqikli

N

i

srsr SS      (7.3.3)
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Equation (7.2.3) suggests that for the left-hand sides of the inequalities (7.3.3) and
(7.3.4) to vanish, the positions of particles i and i′  must change randomly by a few
wavelengths or more, thereby causing the real and imaginary parts of the factor

)](iexp[ ii ′− ∆∆  to vary randomly between –1 and +1. It is then straightforward to
show that the configuration average of the total phase matrix of the volume element is
also given by the “incoherent” sum of the partial phase matrices:

.
1

i

N

i

ZZ
=

=�� R (7.3.5)

Finally, Eqs. (3.9.10), (3.9.11), and (7.2.15) yield the configuration-averaged total
scattering and absorption cross sections of the volume element as sums of the respec-
tive partial optical characteristics:

,,sca

1

sca i

N

i

CC
=

=�� R (7.3.6)

.,abs

1

abs i

N

i

CC
=

=�� R (7.3.7)

Although the presence of the rapidly oscillating complex exponential factors in-
deed causes the left-hand sides of the inequalities (7.3.3) and (7.3.4) to vanish upon
configurational averaging in most cases, it is clear that both inequalities are violated
in the vicinity of the exact forward-scattering direction r̂( ≈ ),ŝ  when all the i∆
vanish or become very small (see Eq. (7.2.3)) and all the factors )](iexp[ ii ′− ∆∆  re-
duce to unity. This means that single scattering by constituent particles in directions
close to the exact forward direction is always coherent or almost coherent irrespective
of specific particle positions and must result in an additional enhancement of intensity
due to constructive interference. Therefore, Eqs. (7.3.5)–(7.3.7) are not a direct con-
sequence of the USSA, but rather are based on the USSA and the additional assump-
tion that the forward-scattering interference can be neglected. The latter assumption,
along with the USSA, defines the far-field modified uncorrelated single-scattering
approximation (MUSSA) for a small volume element.

Equations (7.2.14), (7.2.15), and (7.3.5)–(7.3.7) are usually adopted without rig-
orous proof and form the basis for treating single scattering by random particle en-
sembles in virtually every book on light scattering and radiative transfer. It is clear
from our detailed derivation that Eqs. (7.2.14) and (7.2.15) are a consequence of the
simple far-field SSA as applied to any particle group, either fixed or random, whereas
Eqs. (7.3.5)–(7.3.7) are strictly valid only in the framework of the far-field MUSSA.

Spatial coordinates are not the only particle characteristics that can vary with time.
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In principle, the particles may also change their sizes, shapes, and/or orientations. A
traditional approach in such cases is to assume that temporal changes of particle states
are totally uncorrelated with temporal changes of their coordinates (Section 5.1). As a
consequence, one may average the right-hand sides of Eqs. (7.2.14), (7.2.15), and
(7.3.5)–(7.3.7) over the varying particle states and obtain the following formulas for
the cumulative ensemble-averaged optical characteristics of the entire volume ele-
ment:

,    1, ξξ ��=�� KK NR (7.3.8)

,    1, ξξ ��=�� ZZ NR (7.3.9)

,    ext,1,ext ξξ ��=�� CNC R     (7.3.10)

,    sca,1,sca ξξ ��=�� CNC R     (7.3.11)

,    abs,1,abs ξξ ��=�� CNC R     (7.3.12)

where the angular brackets on the right-hand side denote averages of the respective
single-particle characteristics over the particle states.

7.4 Forward-scattering interference

To demonstrate the forward-scattering interference effect, Fig. 7.4.1 shows the ele-
ment o11��F  of the scattering matrix for a simple two-sphere system in random ori-
entation computed using the exact superposition T-matrix method (Mishchenko and
Mackowski, 1994). As will be discussed in greater detail in Chapter 11, the orienta-
tion-averaged scattering matrix is defined as

,)0,0;0,()( o
incincscasca

o �====�=�� ϕθϕΘθΘ ZF (7.4.1)

which means that the plane through the incidence and scattering directions is used as
a reference for defining the Stokes parameters of both the incident and the scattered
light. Averaging over the uniform orientation distribution of a two-sphere cluster with
a fixed distance between the components is intended to approximately model the ran-
domness of the component-sphere positions. Also shown are the results for two
equivalent spheres that scatter light in total isolation from each other.

It is clearly seen indeed that the main difference in the curves for two interacting
spheres from those for two non-interacting spheres is the presence of a pronounced
oscillating pattern at forward-scattering angles. To demonstrate unequivocally that the
latter is caused by the interference, we note that, as follows from Eqs. (3.7.11)–
(3.7.26), (7.2.3), and (7.2.9), the interference contributions )( ii ′≠  to the total phase
matrix of a two-sphere cluster differ from the incoherent contributions )( ii ′=  in that
each of them includes an additional factor )]()ˆˆ(iexp[ 211 RRrs −⋅−k  or ŝ(iexp[ 1k−

)],()ˆ 21 RRr −⋅− where 1R  and 2R  connect the origin of the laboratory coordinate
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system with the centers of spheres 1 and 2, respectively. By writing dRR =− 12

,d̂d= where d is the distance between the component sphere centers and the unit
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Figure 7.4.1.  The results of exact T-matrix computations of the o11��F  element of the
scattering matrix versus the scattering angle Θ  for a two-sphere cluster in random orientation.
The d is the distance between the centers of the component spheres and, for the three cases
studied, increases such that the product dk1  grows from 15 to 60. The radius a of each sphere
is µm, 5.0  their relative refractive index is 1.5, and the wavelength in the surrounding medium
is µm. 6283.0  For comparison, the thick curves show o11��F  for two noninteracting spheres of
the same size and relative refractive index.
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vector d̂  specifies the cluster orientation, and averaging over all ,d̂  we derive

]ˆ)ˆˆ(iexp[ˆd
4
1    ]ˆ)ˆˆ(iexp[ˆd

4
1

1
4  

1
4  

drsddrsd ⋅−−=⋅− dkdk
ππ ππ

ŝ

r̂

rs ˆˆ −2Θ

Figure 7.4.2.  Illustration of the equality ).22sin(    |ˆˆ| Θ=− rs
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Figure 7.4.3.  The solid curve shows the results of exact T-matrix computations of the o11��F
element of the scattering matrix versus the scattering angle Θ  for a two-sphere cluster in
random orientation with ,601 =dk  µm, 5.0=a  ,5.1=m  and µm.6283.01 =λ  For comparison,
the dotted curve shows the result of using Eq. (7.4.5), whereas the dashed curve depicts the

o11��F  for two noninteracting spheres of the same size and relative refractive index.
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|ˆˆ|

|)ˆˆ|sin(  
1

1

rs
rs

−
−=

dk
dk

          ),(  Θf=       (7.4.2)

where )ˆˆarccos( sr ⋅=Θ  is the scattering angle and

,
)2sin(2

)]2sin(2sin[    )(
1

1

Θ
ΘΘ

dk
dkf =       (7.4.3)

since )2sin(2  |ˆˆ| Θ=− rs  as shown in Fig. 7.4.2. Thus, the orientation-averaged total
two-sphere phase and scattering matrices in the single-scattering approximation are
given by

)],(1)[ˆ ,ˆ(2    )ˆ ,ˆ( 1o Θf+=�� srsr ZZ      (7.4.4)

)],(1)[(2    )( 1o ΘΘΘ f+=�� FF      (7.4.5)

where )ˆ,ˆ(1 srZ  and )(1 ΘF  are the single-sphere phase and scattering matrices, re-
spectively.

Figure 7.4.3 demonstrates that for a sufficiently large value of ,1dk  these simple
formulas provide a nearly perfect fit to the exact T-matrix result. The )(Θf  has a
sharp and narrow maximum at 0=Θ  followed by a succession of maxima and
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Figure 7.4.4.  )(Θf  versus Θ  for 151 =dk  and 60.
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minima with decreasing frequency and magnitude (see Fig. 7.4.4). The magnitude of
all maxima and minima is inversely proportional to dk1  with the exception of the first
interference maximum at 0=Θ  whose magnitude is always equal to unity owing to
the well-known limit

.1    sin
0→

→
xx

x

This explains the diminishing effect of the interference with increasing dk1  and Θ  at
side- and backscattering angles in Fig. 7.4.1.

7.5 Energy conservation

As we have already mentioned, the presence of the interference pattern at forward-
scattering angles means that Eqs. (7.3.5)–(7.3.7) for the configuration-averaged total
phase matrix and total scattering and absorption cross sections are only approximate
consequences of the far-field USSA. Unfortunately, this also implies that the USSA
violates the energy conservation law. Indeed, energy conservation requires that the
total scattering cross section of the particle collection R�� scaC  be equal to the total
extinction cross section R�� extC  if all the constituent particles are nonabsorbing so
that ii CC ext,sca, =  for each i. One can see that Eqs. (7.2.15) and (7.3.6) already lead to

RR ��=�� extsca CC  even though Eq. (7.3.6) does not include the contribution of the
forward-scattering interference. Adding this contribution breaks the energy balance
and leads to the unphysical result .extsca RR ��≠�� CC

The fact that the MUSSA satisfies the energy conservation law precisely whereas
the presumably more accurate USSA does not seems to be rather strange. The expla-
nation of this paradox is that the USSA includes two-particle electromagnetic interac-
tions in the calculation of the total phase matrix and the total scattering cross section,
but not in the calculation of the total extinction matrix and the total extinction cross
section. It can in fact be shown that energy conservation would be restored if one
were to take into account two-particle interactions in the calculation of R��K  and

R�� extC  by including the contribution of light scattered twice, but this would go be-
yond the framework of the SSA. Therefore, the implicit (and not the best) way in
which energy conservation is restored in the MUSSA is by neglecting artificially the
forward-scattering interference.

7.6 Conditions of validity of the far-field modified
uncorrelated single-scattering approximation

Let us now consider what happens with increasing average distance ��d  between
particles in a random group. Figure 7.4.1 shows that increasing the distance between
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two interacting spheres makes the main interference maximum narrower, whereas the
o11��F  values at other scattering angles approach those obtained by doubling the cor-

responding single-sphere values. Also it is seen that the o11 )0( ��F  value for two inter-
acting spheres remains approximately constant with varying distance between the
sphere centers and is close to twice that computed for two non-interacting spheres, as
it should be (the square of the sum of two equal electric fields is equal to twice the
sum of the squares of the fields: )).||||(2|| 222 EEEE +=+  Thus we can conclude
that the expected consequences of taking the limit →��dk1 ∞ are the following:

● The total amount of energy contained in the interference pattern decreases
with increasing interparticle distance and eventually becomes negligible
compared to the total energy scattered by the particles.

● The angular width of the main interference peak becomes so small that the
peak becomes hardly distinguishable from the incident beam.

Therefore, the MUSSA can be expected to give essentially the same results as the
USSA provided that the particles are separated widely enough. This is a welcome
conclusion since the MUSSA is significantly simpler than the USSA.

The first zero of the function )(Θf  occurs at ].)2(arcsin[2 10 dkπΘΘ ==
Therefore, to make the amount of energy contained in the interference pattern for a
two-particle system negligibly small, this angle must be much smaller than ,π  which
means that dk1  must be much greater than unity. Furthermore, it is well known that at
least half of the energy scattered by large particles ( ak1  � 1) is contained in the nar-
row diffraction peak and mostly at scattering angles )(4 1ak<Θ  (see Section 7.4 of
MTL). Therefore, we must also require that 0Θ  � ,)(4 1ak  which leads to d  �  a.

Although the forward-scattering interference pattern for a many-particle system
can be significantly more complex than that shown in Figs. 7.4.1 and 7.4.3, it is clear
that the conditions of validity of Eqs. (7.3.5)–(7.3.7) imposed by the presence of the
interference pattern should be as follows:

2
1Lk  � 1,      (7.6.1)

2
L  � ,ia i = 1, …, N. (7.6.2)

These inequalities reflect the obvious fact that the angular width of the forward-
scattering interference peak generated by a many-particle group is controlled by the
average distance between any two particles from the group rather than that between
two neighboring particles. To ensure that particle positions are uncorrelated during
the measurement (the position of each particle is not affected by the presence of the
other particles), we must also require that the average distance �� nd  between neigh-
boring particles be much greater than their sizes:

�� nd  � ,ia i = 1, …, N. (7.6.3)
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Let us now discuss the conditions of validity of the main assumption of the SSA,
viz., that each particle is excited only by the incident field. First of all, it is obvious
that the total amount of energy scattered by the particles filling a volume element
must be much smaller than the amount of incident energy passing through the vol-
ume-element’s geometrical cross section:

i

N

i

Csca,

1=

 � .2L       (7.6.4)

Besides this generic constraint, one may look at specific manifestations of close-
proximity effects and how they behave with increasing interparticle separation. For
example, if the line connecting the centers of two particles is nearly parallel to the
incidence direction, then the field scattered by the particle located closer to the source
of illumination can attenuate the incident field when it reaches the other particle. For
particles much larger than the wavelength, this effect can be qualitatively interpreted
as a “shadow” cast by the first particle upon the second particle.

To illustrate this phenomenon, Fig. 7.6.1 shows the results of T-matrix computa-
tions of the ratio ρ  of the total scattering cross section for a two-particle cluster with
identical touching components and in random orientation to the sum of the scattering
cross sections of two non-interacting spheres as a function of the sphere size parame-
ter .1akx =  In the geometrical optics limit, the scattering cross section of a nonab-
sorbing particle is equal to twice the area of the particle projection on the plane per-
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Figure 7.6.1.  The ratio of the total scattering cross section for a two-particle cluster with
identical touching components and in random orientation to the sum of the scattering cross
sections of two noninteracting spheres of the same radius as a function of the sphere size
parameter. The relative refractive index of the spheres is 1.5.
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pendicular to the incidence direction (see Section 7.4 of MTL).  Therefore, in the
limit →ak1 ∞ the ratio ρ  should approach the value ,)2( 2

o aG π��  where o��G  is
the orientation average of the projected area of the two-sphere cluster. Obviously, ρ
would be very close to unity if the distance between the sphere centers were much
greater than their radii, but should be significantly smaller than unity for touching
spheres.

Figure 7.6.2 illustrates the computation of o��G  for the case of a randomly ori-
ented two-sphere cluster with identical touching components. As before, the cluster
orientation is specified by the direction of the unit vector d̂  or, equivalently, by its
polar angle θ  and azimuth angle ϕ  (Fig. 7.6.2(a)). Let us assume for the sake of
simplicity that the incident light propagates in the direction of the positive z-axis.
Then the area of the bisphere projection onto the xy-plane is independent of the azi-
muth angle, so that

 )ˆ(ˆd 
4
1    

 

4  
o ddGG =��

ππ

   )(sindd 
4
1  

  

0  

2  

0  
θθθϕ

π

ππ

G=

        ),(sind  
2  

0  
θθ

π

Gθ=        (7.6.5)

where )(θG  is the area of the shape shown in Fig. 7.6.2(b). Obviously, the latter is

ϕ

θ

x

yO

z

d̂

(a)

θsin2a

(b) (c)

Figure 7.6.2.  Computation of o��G  for a randomly oriented cluster consisting of two identical
touching spheres.
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equal to 22 aπ  minus twice the common area of the two overlapping circles in Fig.
7.6.2(c), or ),cossin2()( 2 θθθπθ −−= aG  thereby yielding 21)2( 2

o =�� aG π
)3(4 π+ ≈ 0.9244. The actual scattering cross section ratio in Fig. 7.6.1 indeed

tends to this asymptotic value as the size parameter increases, thereby corroborating
the presence and the importance of the shadowing effect.

Of course, the shadowing effect and the forward-scattering interference are not the
only manifestations of the electromagnetic interaction between the particles forming a
group and not the only factors that limit the accuracy of the far-field MUSSA and its
range of applicability in terms of the smallest allowable interparticle separation. Un-
fortunately, it is difficult to perform a detailed theoretical analysis of this problem for
many-particle groups consisting of arbitrary components. We hope, therefore, that
exact numerical results for a few simple cases can provide at least qualitative guid-
ance.

Figure 7.6.3 depicts the ratio of the total scattering cross section of a two-sphere
cluster in random orientation to that of two noninteracting spheres of the same size. It
is clear that in order for this ratio to be sufficiently close to unity, the distance be-
tween the centers of the interacting spheres must be at least several times greater than
the sphere radii. The corresponding asymmetry parameter ratio (Fig. 7.6.4) is much
closer to unity and is essentially independent of dk1  for the larger spheres with x = 5
and 10, but still requires interparticle distances d � a  for the spheres with x = 1 in
order to reach the asymptotic value unity.
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Figure 7.6.3.  The ratio of the scattering cross section of a two-sphere cluster with equal
components and in random orientation to the sum of the scattering cross sections of two
noninteracting spheres of the same radius as a function of .1dk  The relative refractive index
of the spheres is 1.5 and their size parameter akx 1=  varies from 1 to 10.



Chapter 7156

Figures 7.4.1 and 7.6.5 demonstrate how increasing the interparticle separation af-
fects the scattering matrix element o11��F  and the ratios o11o22 ���� FF  and

o11o21 ����− FF  for two interacting wavelength-sized spheres with a size parameter
.5=x  The behavior of the ratio o11o22 ���� FF  is especially revealing since it must

be identically equal to unity for noninteracting spheres. Obviously, this asymptotic
regime is approximately reached when the distance between the sphere centers ex-
ceeds several times their radii. We have seen before that no distance between the in-
teracting spheres can eliminate the forward-scattering interference pattern (Fig. 7.4.1).
However, this pattern becomes very narrow when d exceeds several times the sphere
radii (or several times the wavelength for subwavelength-sized particles) and eventu-
ally becomes indistinguishable from the incident light. Although the data depicted in
Figs. 7.4.1 and 7.6.3–7.6.5 were computed for two-sphere clusters with equal compo-
nents, analogous T-matrix results for bispheres with different components (not shown
here) exhibit the same basic features and lead to the same conclusions.

Our final note concerns the relative importance of the far-field-zone criteria
(3.2.19) and (7.2.12) for a single component particle and for the entire particle group,
respectively. For a single particle with a size parameter 101 =ak  the inequality
(3.2.19) implies that the far-field zone begins at a distance from the particle much
greater than five particle radii, which is not much stricter than the inequality (3.2.18).
However, for a volume element with a size parameter 4

1 102 =Lk  the inequality
(7.2.12) yields r  � ,1025.0 4 L×  which moves the far-field zone much farther from
the volume element than the inequalities (7.2.10) and (7.2.11) would require. This
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Figure 7.6.4.  As in Fig. 7.6.3, but for the ratio of the asymmetry parameter of a two-sphere
cluster with equal components and in random orientation to the asymmetry parameter of two
noninteracting spheres of the same radius.
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implies that if one wants to apply the MUSSA to a volume element with  L = 2 mm
assuming a source of illumination with a wavelength of µm6283.0  (thereby yielding

),102 4
1 =Lk  then the observation point must be moved from the volume element

by many meters. However, the following section will demonstrate that in many cir-
cumstances, one can theoretically model the response of a detector located at a dis-
tance much greater than the volume element size but perhaps not as far as the ine-
quality Eq. (7.2.12) would necessitate.
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Figure 7.6.5.  As in Fig. 7.4.1, but for the ratios o11o22 ���� FF  and .o11o21 ����− FF
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7.7 First-order-scattering approximation

In this section we will take another look at single scattering of light by a small volume
element by assuming that detectors of the scattered light are located sufficiently far
from the volume element that the inequalities (7.1.9), (7.2.10), (7.2.11), and (7.2.13)
are satisfied, whereas the condition (7.2.12) will not be enforced. As a consequence,
the volume element can no longer be considered at each moment in time as an effec-
tive point-like scatterer and characterized by a cumulative amplitude scattering ma-
trix. Instead, it must be explicitly treated as a macroscopic random cloud of particles.
The alternative approach described below will be based on the concept of the coher-
ency dyad outlined in Section 3.10.

As before, we start with the SSA equations (7.1.1), (7.1.2), and (7.1.6). We then
define the coherency dyad of the total electric field at the observation point as
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(7.7.1)

and assume that during the time necessary to take a measurement, the positions of all
particles inside the volume V are totally random (Section 5.2). The latter assumption
implies that the average distance between neighboring particles is much greater than
the particle sizes, Eq. (7.6.3). Thus, the configuration-averaged coherency dyad is
given by
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(7.7.2)

where the configuration averaging is performed assuming the probability distribution
function (5.2.2). The first term on the right-hand side of this formula is the coherency
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dyad of the incident field, the second and third terms describe the interference of the
incident and scattered fields, the fourth term describes the interference of the partial
fields singly scattered by different particles, and the fifth term is the sum of the coher-
ency dyads of the partial scattered fields.

Averaging the interference terms over particle positions involves the evaluation of
the integrals
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(cf. Eq. (7.1.6)), which give the average partial scattered fields at the observation
point. It is convenient to perform the integration in the spherical coordinate system
originating at the observation point (Fig. 7.7.1(a)). Taking into account that rR =i

,iR′+ where the vector iR′  connects the observation point and particle i, and using the
Saxon asymptotic expression (B.10), we obtain
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This formula shows that each average partial scattered field is contributed to only by
those points of the volume element that belong to the segment )(∆ rs  of the infinite
straight line through the observation point and the source of illumination (Figs.
7.7.1(a) and 7.7.1(b)). Hence the following three situations must be considered: the
observation point can either be behind the scattering volume as viewed from the
source of illumination (e.g., point 1 in Fig. 7.7.1(b)), or between the source of illumi-
nation and the scattering volume (e.g., point 2), or lie on a line which is parallel to the
incidence direction and does not go through the scattering volume (e.g., point 3).

It is obvious that RrE �� )( 3
sca
i  at point 3 is equal to zero and that the average field

at point 1 is given by

).()ˆ,ˆ()(∆2i )( 1
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The radial integral for point 2 contains a rapidly oscillating factor ),i2exp( 1 iRk ′  which
makes RrE �� )( 2

sca
i  much smaller than RrE �� )( 1

sca
i  provided that )(∆ 21 rsk � 1. The

latter condition is equivalent to the inequality (7.6.1). More fundamentally, the pres-
ence of the delta function )ˆˆ(δ iRs ′−  implies the existence of the interference of the
incident and backscattered fields, which is unphysical (recall the warning issued on p.
107). Thus we can conclude that RrE �� )(sca

i  is given by Eq. (7.7.5) if the observation
point is “shadowed” by the volume element and vanishes otherwise.

It is clear from Eqs. (7.7.5) and (3.3.3) that the average partial field created by
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particle i at a “shadowed” distant observation point is a transverse plane wave propa-
gating in the direction of the incident plane wave. Therefore, the second and third
terms on the right-hand side of Eq. (7.7.2) describe the interference of pairs of trans-
verse plane waves propagating in the same direction.

It follows from Eqs. (3.3.8)–(3.3.11), (3.8.8)–(3.8.14), and (3.9.9) that the factor

)ˆ,ˆ()(∆2
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1
1

ssr i

N

i

As
Vk
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π

is of the same order of magnitude as the sum of the extinction cross sections of all the
particles filling the volume element divided by the volume element’s geometrical
cross section:

ŝ
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Figure 7.7.1.  First-order scattering by a small volume element.
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we can neglect the fourth term on the right-hand side of Eq. (7.7.2) in comparison
with the second and third terms.

Integrating the last term on the right-hand side of Eq. (7.7.2) over all particle po-
sitions and recalling the inequalities (7.2.11) and (7.2.13) yields

∗

=

⋅⊗⋅ ])ˆ ,ˆ([])ˆ ,ˆ([1 inc
0

inc
0

1
2 EsrEsr ii

N

i

AA
r

��

,)]ˆ ,ˆ([)ˆ ,ˆ(1 Tinc

1
2

∗

=

⋅⋅= srsr ii

N

i

AA
r

�

�

�

ρ

where incρ�  is the coherency dyad of the incident field. This is simply an “incoherent”
sum of partial coherency dyads at the observation point, each partial dyad being due
to a transverse spherical wave propagating in the same direction given by the unit
vector .r̂

We can now make use of the transverse character of the plane and spherical waves
involved in the first, second, third, and fifth terms on the right-hand side of Eq. (7.7.2)
and rewrite this equation in terms of the Stokes vector using Eq. (2.12.3). After tedi-
ous but simple manipulations, we derive
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if the observation point is shadowed by the volume element and
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otherwise. We will refer to the totality of approximations made in the derivation of
Eqs. (7.7.7) and (7.7.8) as the first-order-scattering approximation (FOSA).

Let us now consider the measurement situation shown schematically in Fig.
7.7.1(c). The integration of Eqs. (7.7.7) and (7.7.8) over the acceptance area of the
detectors shows that the polarized signal measured by detector 1 per unit time is given
by
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whereas that measured by detector 2 per unit time is given by
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By choosing r to be sufficiently large, one can minimize the third term on the right-
hand side of Eq. (7.7.19) relative to the second term. As a consequence, the response
of detector 1 becomes
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Equations (7.7.10) and (7.7.11) represent the main result of the FOSA. Compari-
son with Eqs. (3.7.6), (3.7.8), (3.8.5b), (7.2.14), and (7.3.5) shows that the FOSA pre-
dicts essentially the same electromagnetic response of the distant detectors as the far-
field MUSSA but without requiring that the detectors be placed as far from the vol-
ume element as to satisfy the inequality (7.2.12). However, since the volume element
is now treated explicitly as a macroscopic object subtending a nonzero solid angle
when viewed from the observation point, we must require that it be fully within the
detector angular aperture .∆Ω  This implies that the distance r must be large enough
to satisfy the inequality

2

2

r
L  < .∆Ω     (7.7.12)

This condition can be rather onerous in the case of a well-collimated detector. Like
the MUSSA, the FOSA is based on ignoring the interference of light singly scattered
by different particles in the forward direction (i.e., the fourth term on the right-hand
side of Eq. (7.7.2)) and, as a consequence, satisfies the energy conservation law.

Assuming, as before, that the temporal changes of the particle states are uncorre-
lated with temporal changes of their coordinates, we obtain
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,)ˆ ,ˆ(∆  inc
12 IZ  2 Signal ξ��= sqN

r
S         (7.7.14)

where the angular brackets denote averages of the single-particle extinction and phase
matrices over the particle states. Again, this is the same result as that predicted by the
far-field MUSSA (cf. Eqs. (7.3.8) and (7.3.9)). It is also straightforward to verify that
all formulas of this section remain unchanged if the volume element is illuminated by
a parallel quasi-monochromatic beam rather than a plane electromagnetic wave.
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7.8 Discussion

The traditional way to define the Stokes parameters applies only to transverse elec-
tromagnetic waves such as plane and spherical waves. It was, therefore, logical to
start the analysis of single scattering by a small volume element using the far-field
SSA, which treats the volume element at each moment in time as a unified scatterer
generating a single outgoing spherical wave and makes possible the introduction of
the cumulative amplitude scattering matrix.

An important result of our analysis of the far-field SSA applied to a random group
of particles is that one must distinguish between the simple USSA and the MUSSA.
The MUSSA satisfies the energy conservation law, is widely used in practice, and is a
cornerstone of the phenomenological theory of radiative transfer. However, one
should be aware of the fact that the MUSSA goes beyond the USSA by neglecting the
interference of light scattered by various particles in the vicinity of the exact forward
direction and thus may be inapplicable in circumstances involving precise computa-
tions or measurements at scattering angles approaching zero (e.g., Ivanov et al.,
1970). Otherwise, the MUSSA can be expected to give satisfactory results provided
that the following conditions are met:

● The observation point is located far enough to satisfy the inequalities
(7.2.10)–(7.2.13).

● The inequalities (7.6.1) and (7.6.2) are satisfied.
● Particle positions are uncorrelated, Eq. (7.6.3), and change by approximately

a few wavelengths or more during the time interval necessary to take a meas-
urement.

● The geometrical cross section of the volume element is much greater than its
total scattering cross section, the inequality (7.6.4).

● The following inequalities analogous to the inequalities (6.1.22)–(6.1.24) are
satisfied:

,∆∆
2 Ω<

r
S             (7.8.1)

D  � ,L               (7.8.2)

r  � ,1

π
iaDk          (7.8.3)

where, as before, D is the diameter of the sensitive surface of the detector,
S∆  is its area, and Ω∆  is the detector angular aperture. As in Sections 3.6

and 6.1, the inequality (7.8.2) applies only to the detector facing the incident
light. The inequality (7.8.3) must be valid for each particle of the group.

Since for large nonabsorbing particles the scattering cross section is approxi-
mately equal to twice the area of the particle geometrical cross section (e.g., Section
7.4 of MTL), the inequality (7.6.4) can be rewritten in the form
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L  � .2 Na π�� (7.8.4)

If the distance from the center of the volume element to the observation point does
not satisfy the inequality (7.2.12), then the total field scattered by the volume element
at a moment in time cannot be approximated by a single spherical wave. In this case,
it is impossible to define the amplitude scattering matrix of the volume element as a
whole, and a different approximate way to model the response of a detector measur-
ing electromagnetic scattering by the small volume element is called for. One such
approach is to apply the FOSA, which is based on the following assumptions:

● The observation point is located far enough to satisfy the inequalities (7.1.9),
(7.2.10), (7.2.11), and (7.2.13).

● Particle positions within the volume element are completely random during
the time interval necessary to take a measurement, Eqs. (5.2.2) and (7.6.3).

● The geometrical cross section of the volume element is much greater than its
total scattering cross section, the inequality (7.6.4).

● The sum of the extinction cross sections of the particles filling the volume
element is much smaller than the volume element geometrical cross section,
Eq. (7.7.6). For particles larger than the wavelength, this assumption is
roughly equivalent to the inequality (7.6.4).

● The inequalities (7.7.12) and (7.8.1)–(7.8.3) are satisfied.

We have demonstrated that if these conditions are met, then the FOSA leads to essen-
tially the same result as the far-field MUSSA in terms of the response of a distant
polarization-sensitive detector.

In summary, the far-field MUSSA and the FOSA can be viewed as alternative
ways to model electromagnetic scattering by a small volume element filled with ran-
domly distributed particles. The far-field MUSSA treats the entire volume element at
each moment in time as an effective point-like scatterer, whereas the FOSA explicitly
considers the volume element as a macroscopic random cloud of particles. However,
both approximations give substantially the same result in terms of the polarization
response of a sufficiently distant detector. This allows one to use Eqs. (7.7.10) and
(7.7.11) whenever a specific scattering situation satisfies the conditions of applicabil-
ity of either approximation.



165

Chapter 8

Radiative transfer equation

The radiative transfer theory originated more than a century ago in the papers by
Lommel (1887) and Chwolson (1889). Since then analytical studies of the radiative
transfer equation have become an independent discipline of mathematical physics and
have resulted in numerous new techniques for solving integral and integro-differential
equations. The RTE has also found remarkably diverse applications in a variety of
science and engineering disciplines dealing with multiple scattering of light by ran-
domly and sparsely distributed discrete particles. However, the usual way to introduce
the RTE has been based on deceptively simple principles of phenomenological radi-
ometry. This has led to the widespread ignorance of the fact that the real derivation of
the RTE and the clarification of the physical meaning of all participating quantities
must be based on fundamental principles of classical electromagnetics as applied to
discrete random media.

During the past three decades, there has been significant progress in re-
consideration of the RTT in terms of the statistical wave formalism (e.g., Barabanen-
kov, 1975; Ishimaru, 1978; Apresyan and Kravtsov, 1996; Tsang and Kong, 2001).
This research has ultimately led to the RTE becoming a corollary of the electromag-
netic theory (Mishchenko, 2002, 2003). Hence the aim of this chapter is to provide a
detailed and systematic microphysical derivation of the RTE from first principles.

Our point of departure is the far-field version of the vector Foldy–Lax equations
for a fixed N-particle system which allows one to represent the total electric field at
an observation point as a superposition of the incident plane wave and N spherical
waves centered at the particles. We will then assume that particle positions are com-
pletely random and will apply the so-called Twersky and ladder approximations to the
average coherency dyad of the total electric field in the limit →N ∞. Separate sec-
tions will provide a summary of approximations necessary to derive the RTE, a dis-
cussion of the physical meaning of all participating quantities, and a detailed com-
parison of the microphysical and phenomenological approaches to radiative transfer.   
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8.1 The Twersky approximation

Let us consider electromagnetic scattering by a large group of particles imbedded in
an infinite, homogeneous, isotropic, and nonabsorbing medium. The particles are
sparsely distributed throughout a macroscopic volume V and are illuminated by a
plane electromagnetic wave propagating in the direction of the unit vector ,ŝ  Eq.
(4.2.8) (see Fig. 8.1.1). We will assume that:

● The particles are separated widely enough that each of them is located in the
far-field zones of all the other particles.

● The observation point is also located in the far-field zones of all the particles.

These assumptions make applicable the far-field version of the vector Foldy–Lax
equations, Section 4.2.

Let us first rewrite Eqs. (4.2.14) and (4.2.11) in a compact symbolic form:
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Figure 8.1.1.  Electromagnetic scattering by a large number of discrete particles sparsely
distributed throughout a macroscopic volume V.
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where N is the total number of the particles,

),(rEE = (8.1.3)

),(incinc rEE = (8.1.4)

),(incinc
ii REE = (8.1.5)

),ˆ,ˆ()(0 sriiiri ArGB
��

=      (8.1.6)

),ˆ,ˆ()( ijiiirij ArGB Rr
��

=      (8.1.7)

),ˆ,ˆ()(0 sR ijjijij ARGB
��

=      (8.1.8)

).ˆ,ˆ()( jlijjijijl ARGB RR
��

=      (8.1.9)

The notation on the right-hand sides of Eqs. (8.1.5)–(8.1.9) follows that introduced in
Section 4.2. Iterating Eq. (8.1.2) yields
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whereas substituting Eq. (8.1.10) in Eq. (8.1.1) gives an order-of-scattering expansion
of the total electric field:
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(cf. Twersky, 1964).  Indeed, the first term on the right-hand side of Eq. (8.1.11) is
the incident field, the second term is the sum of all single-scattering contributions, the
third term is the sum of all double-scattering contributions, etc., as shown schemati-
cally in Fig. 8.1.2.

The terms with ij =  and jl =  in the triple summation on the right-hand side of
Eq. (8.1.11) are excluded, but the terms with il =  are not. Therefore, we can decom-
pose this summation as follows:
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The triple summation on the right-hand side of Eq. (8.1.12) is illustrated in Fig.
8.1.2(d) and includes scattering paths going through a particle only once (so-called
self-avoiding paths), whereas the double summation involves the paths that go
through the same particle more than once, as shown schematically in Fig. 8.1.2(e).
Higher-order summations in Eq. (8.1.11) can be decomposed similarly.

Hence, the total field at an observation point r is composed of the incident field
and single- and multiple-scattering contributions that can be divided into two groups.
The first one includes all the terms that correspond to self-avoiding scattering paths,

r
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Figure 8.1.2.  (a) Incident field, (b) single scattering, (c) double scattering, (d) triple scattering
through a self-avoiding path, and (e) triple scattering through a path that goes through particle i
twice.
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Fig. 8.1.3(a), whereas the second group includes all the terms corresponding to the
paths that go through a scatterer more than once, Fig. 8.1.3(b)–8.1.3(e).

The so-called Twersky approximation neglects the terms belonging to the second
group and retains only the terms from the first group:
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Figure 8.1.3.  (a) Self-avoiding scattering paths and (b)–(e) paths involving four scattering
events and going through a particle more than once.
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(Twersky, 1964). The physical meaning of the Twersky approximation is rather
transparent. Indeed, a close look at Eq. (8.1.13) shows that the electric field exciting
each particle i (i = 1, …, N ) is now replaced by the total electric field that would exist
at the origin of particle i if this particle were removed from the group. We will see in
the following sections that switching from the full order-of-scattering expansion
(8.1.11) to the partial Twersky expansion (8.1.13) is a crucial step in the derivation of
the RTE.

It is straightforward to show that for a large N, the Twersky approximation in-
cludes the majority of multiple-scattering paths. Specifically, an L-fold summation
with 2>L  on the right-hand side of the exact expansion (8.1.11) contains

1)1( −− LNN  terms, whereas that in the approximate expansion (8.1.13) contains
)!(! LNN −  terms. The ratio of these two numbers indeed tends to unity as →N ∞,
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Figure 8.1.4.  Diagrammatic representations of (a) Eq. (8.1.11) and (b) Eq. (8.1.13).
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which suggests that one can expect the Twersky approximation to yield rather accu-
rate results provided that the number of particles is sufficiently large.

It is convenient to represent order-of-scattering expansions of the electric field
using the diagram method. Panel (a) of Fig. 8.1.4 visualizes the full expansion
(8.1.11), whereas panel (b) illustrates the Twersky approximation (8.1.13). The ar-
rows in these diagrams represent the incident field, the symbol        denotes multiply-
ing a field by a B

�

 dyadic, and the dashed curve indicates that two scattering events
involve the same particle.

8.2 The Twersky expansion of the coherent field

Let us now assume that the particles filling the volume V are randomly moving and
consider the field )(rE  at an internal point .V∈r  In general, )(rE  varies (fluctu-
ates) in time because of the random temporal variations of particle coordinates and
states, albeit at a much slower rate than the time-harmonic factor ).iexp( tω−  A typi-
cal measurement takes a significant amount of time during which the electromagnetic
signal is averaged over a representative set of particle positions and states. Therefore,
it is often convenient to decompose )(rE  into the average (or coherent) part )(c rE
and the fluctuating part :)(f rE

),()()( fc rErErE += (8.2.1)

where, upon assuming that the particle ensemble is fully ergodic,

,)()()( ,c ξRrErErE ��=��= t (8.2.2)

.)()( ,ff 0rErE R =��=�� ξt (8.2.3)

The statistical averaging is performed over those coordinates and states of all the par-
ticles that are physically realizable during the time of the measurement.

It is very important to recognize that the coherent field )(c rE  thus defined is not a
real physical field but rather is a purely mathematical construction. Indeed, if we re-
store the time-harmonic factor ),iexp( tω−  which we have been omitting so far for the
sake of brevity, then we must conclude that the time average of the actual electric
field is equal to zero, Eq. (1.2.1). In contrast, the coherent field does not vanish be-
cause it is defined as the time average of the part of the electric field that does not
include the factor ).iexp( tω−  The only reason to introduce the coherent field in the
first place is that it will eventually appear in formulas for quantities that describe the
multiply scattered radiation and can be actually measured with a suitable optical de-
vice. These quantities are defined in such a way that the factor )iexp( tω−  naturally
disappears upon multiplication by its complex-conjugate counterpart.

Assuming that all particles have the same statistical characteristics and that the
state of each particle is independent of its coordinates, we have from Eqs. (8.1.13) and
(5.1.11):
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The spatial integrations are performed over the entire volume V.
Note that since Eqs. (8.1.1) and (8.1.2) are valid only in the far-field zones of all

the particles filling the scattering volume, each integral on the right-hand side of Eq.
(8.2.4) should, in principle, exclude a spherical volume element centered at the obser-
vation point r or at a particle origin iR  (i = 1, …, N ) and having a radius satisfying
the inequalities (3.2.17)–(3.2.19). However, usually this volume element is much
smaller than V, and its relative contribution to the integrals can be expected to be
negligible.

Equations (8.1.6)–(8.1.9) yield
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where ξ�� )ˆ,ˆ( nmA
�

 is the average of the single-particle scattering dyadic over the par-
ticle states. Finally, recalling Eq. (5.1.15), we obtain
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or, in the limit →N ∞,

inc
0

  

inc
c )ˆ,ˆ()()(d iiiii

VN
ArGn EsrRREE ⋅��+=

∞→
ξ

�

    )()()()(dd 00
  

ijijiji
V

RGrGnn RRRR+

            inc)ˆ,ˆ()ˆ,ˆ( jijiji AA EsRRr ⋅��⋅��× ξξ
��

    )()()()()()(ddd 000
  

jlijiljilji
V

RGRGrGnnn RRRRRR+

     inc)ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( ljljlijiji AAA EsRRRRr ⋅��⋅��⋅��× ξξξ
���

    .�+    (8.2.7)

Note that the subscripts i, j, … are no longer summation indices and are only used to
label different integration variables. Equation (8.2.7) is the full vector version of the
expansion derived by Twersky (1964) for scalar waves.

8.3 Coherent field

Let us now assume for the sake of simplicity that the distribution of the particles
throughout the volume V is statistically uniform, Eq. (5.2.1), and that the volume has
a concave boundary. The latter assumption ensures that all points of a straight line
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connecting any two points of the medium are inside the medium.
It is convenient for our purposes to introduce an s-axis parallel to the incidence di-

rection and going through the observation point. This axis enters the volume V at the
point A such that 0)( =As  and exits it at point B (Fig. 8.3.1). Let us consider the first
integral on the right-hand side of Eq. (8.2.7) and denote it .1I  From rR =i ,iR′+  we
have
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(8.3.1)

The observation point is assumed to be in the far-field zone of any particle, which
means that iRk ′1  � 1. We may, therefore, use in Eq. (8.3.1) the Saxon asymptotic
expansion of a plane wave in spherical waves (see Appendix B):

A

B

ŝ

V

O

r

jR

s

iR

ijji RR −=

ii rR −=′

jO iO

Ar

Observation
point

Figure 8.3.1.  Geometry showing the quantities used in the derivation of Eq. (8.3.8).
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In order to evaluate the integral (8.3.1), we use a spherical polar coordinate system
with origin at the observation point and with the z-axis directed along the s-axis. We
thus have
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Let us now recall that the number of particles filling the volume V is assumed to be
very large, and the particles are assumed to be separated by distances greatly exceed-
ing the wavelength (Eq. (4.2.6)). As a consequence, )(rs � 11 k  (except for points
in the immediate vicinity of the boundary), which suggests that the second term on
the right-hand side of Eq. (8.3.3) must be much smaller than the first term. Hence,
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Consider now the second integral on the right-hand side of Eq. (8.2.7) and denote
it .2I  Since ,jiij RRrR +′+=  we have
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where
inc
01

inc )ˆiexp( ERsE jj k ⋅=

  )()ˆiexp()ˆiexp( inc
11 rERsRs jii kk ⋅′⋅=

  )]iexp()ˆˆ(δ)iexp()ˆˆ([δ 12i
11

2

1
iiii

i
RkRk

Rk
′′−−′−′+

′��
�

�
��
�

�
= RsRsπ

  ).()]iexp()ˆˆ(δ)iexp()ˆˆ([δ 1 inc
11 rERsRs jijijiji

ji
RkRk

R
−−−+×

(8.3.6)

It is thus clear that only particles with origins on the s-axis contribute to .2I  Substi-
tuting Eq. (8.3.6) in Eq. (8.3.5) yields
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The remaining integrals in Eq. (8.2.7) are evaluated analogously. The final result is as
follows:
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where the dyadic exponential is defined as
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+⋅⋅+⋅++= BBBBBBIB (8.3.9)

It is clear from the derivation of Eq. (8.3.8) that the coherent field is a superposi-
tion of the incident field and the fields that are singly and multiply scattered in the
exact forward direction. In other words, all single- and multiple-scattering paths that
contribute to the coherent field at an internal observation point lie on the straight line
parallel to the incidence direction and going through the observation point. Further-
more, all particles that do contribute to the coherent field lie between the source of
illumination and the observation point. It is important to recognize that it was the in-
clusion of all orders of multiple forward scattering that led to the exponential s-
dependence of the coherent field.

The fact that the coherent field is controlled by the forward-scattering dyadic is
not surprising. Indeed, the fluctuating component of the total field is the vector sum of
the partial fields generated by different particles. Random movements of the particles
involve large phase shifts in the partial fields, thereby causing the fluctuating field to
vanish when it is averaged over particle positions. The exact forward-scattering di-
rection is different because the phase of the partial wave forward-scattered by a parti-
cle towards the observation point in response to the incident wave does not depend on
the particle position along the line connecting the source of illumination and the ob-
servation point (see Fig. 8.3.2). Therefore, the interference of the incident wave and
the forward-scattered partial wave is always the same irrespective of the precise posi-
tion of the particle, and the result of the interference does not vanish upon statistical
averaging over particle positions. The same is true of the interference of the incident
field and a wave forward scattered along a multi-particle path of any order as well as
of the mutual interference of different forward-scattered waves.

Since srrr ˆ)(sA +=  (Fig. 8.3.1), we have from Eq. (8.3.8):
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or



Radiative transfer equation 177
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is the dyadic propagation constant for the propagation direction ,ŝ

])ˆ(iexp[),ˆ( ss ss κη �� =           (8.3.13)

is the coherent transmission dyadic, and

)()0( inc
c As rEE ==          (8.3.14)

is the boundary value of the coherent field. This is the general vector form of the
Foldy approximation for the coherent field (cf. Foldy, 1945). Another form of Eq.
(8.3.10) is
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These results have several important implications. First, since the products
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Figure 8.3.2.  The phase of the wave forward scattered by a particle in response to the incident
plane wave is the same irrespective of the exact position of the particle on the line connecting
the source of illumination and the observation point.
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versality condition,

.0ˆ)(c =⋅ srE          (8.3.16)

Second, the coherent field describes a superposition of transverse waves propagating
in the direction of ŝ  and, therefore, may be associated with the transport of electro-
magnetic energy in the same direction. Third, Eq. (8.3.11) generalizes the optical
theorem to the case of many scatterers by expressing the dyadic propagation constant
in terms of the forward-scattering dyadic averaged over the particle states.

Although Eqs. (8.3.10) and (8.3.16) may appear to describe a transverse electro-
magnetic wave, the reader should not forget that )(c rE  is not a real physical field.
Furthermore, the coherent field was computed by taking an average over a uniform
distribution of particle positions as well as over all physically realizable particle
states. Therefore, it is not defined at any given moment in time. The physical meaning
of the coherent field will be further discussed in later sections.

We can exploit the transverse character of the coherent field to rewrite the above
equations in a simpler matrix form. As in Section 2.6, we characterize the direction of
propagation ŝ  at the observation point r using the corresponding polar and azimuth
angles in the local coordinate system which is centered at the observation point and
has the same spatial orientation as the laboratory coordinate system (see Fig. 8.3.3).
Then the electric vector of the coherent field can be written as the vector sum of the
corresponding -θ  and :components-ϕ

).ˆ(ˆ)()ˆ(ˆ)()( ccc sφrsθrrE ϕθ EE +=          (8.3.17)

Defining the two-component electric column vector of the coherent field according to
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we have instead of Eq. (8.3.15)
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where )ˆ(sk  is the 22×  matrix propagation constant with elements
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where ξ�� )ˆ,ˆ( ssS  is the forward-scattering amplitude matrix averaged over the particle
states (cf. Eqs. (3.3.8)–(3.3.11)).

It is often convenient to rewrite Eq. (8.3.19) in the form

),0(),ˆ()( cc == sss EhE s          (8.3.25)

where

)]ˆ(iexp[),ˆ( ss kh ss =          (8.3.26)

is the coherent transmission amplitude matrix and the 22×  matrix exponential is
defined as follows:
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From Eq. (A.7), the matrix identity ,)( TTT ABAB =  and the reciprocity relations
(3.4.19) and (3.4.21), we easily derive the following reciprocity relations for the co-
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Figure 8.3.3.  The direction of propagation and the electric field vector components of the
coherent field at an observation point r are specified using a local coordinate system with the
same orientation as the laboratory coordinate system centered at O.



Chapter 8180

herent transmission dyadic and the coherent transmission amplitude matrix:

,)],ˆ([),ˆ( Tss ss ηη �� =−          (8.3.28)
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8.4 Transfer equation for the coherent field

We will now describe the coherent field in terms of quantities having the dimension
of monochromatic energy flux. We first define the coherency column vector of the
coherent field according to
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and easily derive from Eqs. (8.3.19) and (8.3.24) the following transfer equation:
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where JK  is the coherency extinction matrix given by Eq. (3.8.4). The Stokes-vector
representation of this equation is obtained by using the definition

�
�
�
�
�

�

�

�
�
�
�
�

�

�

−
−
+

==

∗

∗

∗∗

∗∗

)(Im 2
   )(Re 2

 
2
1 

cc

cc

cccc

cccc

0

1
cc

ϕθ

ϕθ

ϕϕθθ

ϕϕθθ

µ
EE
EE
EEEE
EEEE

�JDI (8.4.3)

and Eq. (3.8.7):
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where K is the Stokes extinction matrix with elements given by Eqs. (3.8.8)–(3.8.14).
The formal solution of Eq. (8.4.4) can be written in the form

)()](,ˆ[)( cc As rrsr IHI =      

,)](,ˆ[ incIH rs s= (8.4.5)

where incI  is the Stokes column vector of the incident plane wave and

])ˆ(exp[),ˆ( 0 ξ��−= ss KH sns (8.4.6)
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is the coherent transmission Stokes matrix.As before, the 44×  matrix exponential is
defined by

 ,
!3

1
!2

1exp �++++= BBBBBB∆B     (8.4.7)

where ∆  is the 44×  unit matrix. In view of Eq. (3.8.16), the coherent transmission
Stokes matrix obeys the following reciprocity relation:
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3 ∆H∆H ss ss =− (8.4.8)

8.5 Dyadic correlation function in the ladder
approximation

We are now well prepared to start the derivation of the RTE. Our first step is to intro-
duce the so-called dyadic correlation function, which involves the total electric fields
at two points inside the volume V and is defined as the following average dyadic
product:

.,        ,)]([)()],([),( , Vtt t ∈′�′⊗�=�′⊗� ∗∗ rrrErErErE Rξ

Note that the left-hand side of this equation involves the actual electric fields and that
the time-harmonic factors )iexp( tω−  and ∗− )]i[exp( tω  cancel each other without
canceling the time average. Also, by equating the time average and the average over
particle coordinates and states we assume the full ergodicity of the particle ensemble.
Obviously, the product

ξµ ,
0

1 )]([)(
2
1

RrErE �′⊗� ∗�

has the dimension of monochromatic energy flux and can potentially be used to de-
fine appropriate measurable quantities. That this is indeed the case will become clear
in Section 8.12.

Recalling the Twersky approximation, Eq. (8.1.13), and Fig. 8.1.4(b), we con-
clude that the dyadic correlation function is given by the expression shown diagram-
matically in Fig. 8.5.1. To classify the different terms entering the expanded expres-
sion inside the angular brackets on the right-hand side of this equation, we will use
the notation illustrated in Fig. 8.5.2(a). In this particular case, the upper and the lower
scattering paths go through different particles. However, the two paths can involve
one or more common particles, as shown in panels (b)–(d) by using the dashed con-
nectors. Furthermore, if the number of common particles is two or more, they can
enter the upper and lower paths in the same order, as in panel (c), or in the reverse
order, as in panel (d). Panel (e) shows a mixed diagram in which two common
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particles appear in the same order and two other common particles appear in the re-
verse order. The contribution of this diagram to the dyadic correlation function is
simply

.][][ inc
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∗
′ ⋅⋅⋅⋅⋅⊗⋅⋅⋅⋅⋅ nknmknlmkilmilrnlnlnkjklijkrij BBBBBBBBBB EE

����������

By the nature of the Twersky approximation, neither the upper path nor the lower
path can go through a particle more than once. Therefore, no particle can be the origin
of more than one connector.
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Figure 8.5.1.  The Twersky expansion of the dyadic correlation function.
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Figure 8.5.2.  Classification of terms entering the Twersky expansion of the dyadic correlation
function.
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To sum and average all the diagrams entering the expanded expression for the dy-
adic correlation function in Fig. 8.5.1 is a very difficult problem which we will not try
to address fully. Instead, we will neglect all diagrams with crossing connectors and
will work with a truncated expansion that includes only the diagrams with vertical or
no connectors. This approximation will allow us to sum and average large groups of
diagrams independently and eventually derive the RTE. The consequences of ne-
glecting the diagrams with crossing connectors will be discussed in Section 8.11.

Let us begin with diagrams that have no connectors. Since these diagrams do not
involve common particles, the ensemble averaging of the upper and lower paths can
be performed independently. Consider first the sum of the diagrams shown in Fig.
8.5.3(a), in which the symbol Σ  indicates both the summation over all appropriate
particles and the statistical averaging over the particle states and positions. According

(a)

(b)

+ + + +

(c)

+ + + +

(d)

(e)

(f)

⇒

∑ ∑ ∑ ∑ ∑ ∑

⇒

∑ ∑ ∑ ∑ ∑ ∑

⇒ ⇒ ⇒ ⇒

+ +

∑ ∑ ∑ ∑ ∑

⇒
⇒

+ +

Figure 8.5.3.  Calculation of the cumulative contribution of the diagrams with no connectors.
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to Section 8.3, summing the upper paths yields the coherent field at the point r. This
result can be represented by the diagram shown in Fig. 8.5.3(b), in which the symbol
⇐  denotes the coherent field.

Similarly, summing the upper paths of the diagram shown in panel (c) yields, in
the limit →N ∞, the diagram shown in panel (d). Indeed, since one particle is already
“reserved” for the lower path, the number of particles contributing to the upper paths
in panel (c) is .1−N  However, the difference between the sum of the upper paths in
panel (c) and the coherent field at r vanishes as N tends to infinity. We can continue
this process and eventually conclude that the total contribution of the diagrams with
no connectors is given by the sum of the diagrams shown in panel (e).

It is now clear that the final result can be represented by the diagram in panel (f ),
which means that the contribution of all the diagrams with no connectors to the dy-
adic correlation function is simply the dyadic product of the coherent fields at the
points r and :r′  .)]([)( cc

∗′⊗ rErE  This result explains the usefulness of introducing
the concept of the coherent field in Section 8.2 despite the fact that )(c rE  does not
represent the actual time average of the electric field.

All other diagrams contributing to the dyadic correlation function have at least one
vertical connector, as shown in Fig. 8.5.4(a). The part of the diagram on the right-
hand side of the right-most connector will be called the tail, whereas the box repre-
sents collectively the part of the diagram on the left-hand side of the right-most con-
nector and can, in principle, be empty. The right-most common particle and the box
form the body of the diagram.

Let us first consider the group of diagrams with the same body but with different
tails, as shown in Fig. 8.5.4(b). We can repeat the derivation of Section 8.3 and verify
that in the limit →N ∞, the sum of all diagrams in Fig. 8.5.5(a) gives the diagram
shown in Fig. 8.5.5(c). Indeed, let particle q be the right-most connected particle and
particle p be the right-most particle on the left-hand side of particle q in the upper
scattering paths of the diagrams shown in Fig. 8.5.5(a). Consider the cumulative con-
tribution of all the diagrams on the left-hand side of Fig. 8.5.5(b) to the total electric
field created at the origin of particle p. Writing this contribution in the expanded form
yields
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Figure 8.5.4.  Diagrams with one or more vertical connectors.
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where n is the number of particles in the common body of the diagrams. The right-
hand side of Eq. (8.5.1) was derived under the assumption that N is so large that all
factors of the type )!()!( knNnN −−−  can be replaced by .kN  This result is sum-
marized by the right-hand side of Fig. 8.5.5(b).

Analogously, the sum of the diagrams in Fig. 8.5.5(d) is given by the diagram in
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Figure 8.5.5.  Summation of the tails.
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Fig. 8.5.5(e), and so on. We can now sum up all diagrams in Fig. 8.5.5(f )  and obtain
the diagram shown in Fig. 8.5.4(c).

Thus the collective contribution to the dyadic correlation function of all the dia-
grams with the same body and all possible tails is equivalent to the contribution of a
single diagram formed by the body alone, provided that the right-most common parti-
cle is excited by the coherent field rather than by the external incident field. This rep-
resents a radical difference from the initial expansion (8.1.13), in which the source of
multiple scattering is the external field. This important result allows us to cut off all
tails and consider only truncated diagrams of the type shown in Fig. 8.5.4(c).

Thus, the dyadic correlation function is equal to ∗′⊗ )]([)( cc rErE  plus the statis-
tical average of the sum of all connected diagrams of the type illustrated by panels
(a)–(c) of Fig. 8.5.6. The symbols �  in these diagrams denote all possible combina-
tions of unconnected particles. Let us, for example, consider the statistical average of
the sum of all diagrams of the kind shown in panel (d) with the same fixed shaded
part. We thus must evaluate the left-hand side of the equation shown in panel (f ),
where, as before, the symbol Σ  indicates both the summation over all appropriate
particles and the statistical averaging over the particle states and positions. Let parti-
cle w be the right-most particle on the left-hand side of particle p in the upper scat-
tering paths of the diagrams on the left-hand side of panel (f ) and u be the left-most
particle on the right-hand side of particle q. The electric field created by particle p at
the origin of particle w via the upper scattering paths of all the diagrams shown on the
left-hand side of panel (f ) is given by the left-hand side of the equation shown dia-
grammatically in panel (g) and can be written in expanded form as
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where qE  is the electric field coming to the origin of particle q via particle u and the
summations and statistical averaging are performed over all appropriate unconnected
particles (see Fig. 8.5.7). In the limit →N ∞, Eq. (8.5.2) takes the form
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��

  ξ��⋅+ )ˆ,ˆ()ˆ,ˆ()()(d)(
  

0 iqpipiwppiqpii
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where the angular brackets now denote amplitude matrices averaged over the particle
states.
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Figure 8.5.6.  Derivation of the ladder approximation for the dyadic correlation function.
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Let us consider the first integral on the right-hand side of Eq. (8.5.3):
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Since the factor )](iexp[ 1 iqpi RRk +  is a rapidly oscillating function of ,iR  the con-
tribution of a major part of V to 1I  can be expected to zero out. The only exception is
the small region around the straight line connecting particles q and p, where the phase

)(1 iqpi RRk +  is almost constant. Therefore, we can evaluate the integral (8.5.4) using
the method of stationary phase (see Appendix E).

Using the Cartesian coordinate system with origin inside particle q and the z-axis
along the vector ,pqR  as shown in Fig. 8.5.7, Eq. (8.5.4) can be rewritten in the form
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Figure 8.5.7.  Calculation of the integrals entering Eq. (8.5.3).
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       ,)ˆ,ˆ()ˆ,ˆ()ˆ,ˆ( qquiqqiqpipiwpp AAA ERRRRRR ⋅⋅��⋅×
���

ξ (8.5.5)

where ,ix ,iy  and iz  are the coordinates of particle i and the integration limits for ix
and iy  are set to infinity owing to the fact that only a small part of V along the z-axis
contributes to .1I  According to Eq. (E.10), the integral over iz  can be subdivided
into three integrals covering the regions with ,01 << izZ  ,0 pqi Rz <<  and

2ZzR ipq <<  (Fig. 8.5.7). The first and third integrals involve rapidly oscillating
functions of iz  and vanish. Indeed,
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where ),2(1 ipq zRkt −=
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is the sine integral, and
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is the cosine integral (see Section 5.2 of Abramowitz and Stegun, 1964 or Section
5.10 of Arfken and Weber, 2001). Similarly,
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where ).2(1 ipq zRkt +=  Thus only the interval pqi Rz <<0  gives a nonzero con-
tribution. We can now use Eq. (E.10),
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The other integrals on the right-hand side of Eq. (8.5.3) are computed analo-
gously. The final result is
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where the dyadic propagation constant κ�  and the coherent transmission dyad η�  are
given by Eqs. (8.3.12) and (8.3.13), respectively. These equations are similar to Eqs.
(8.3.10) and (8.3.11) for the coherent field and are yet another manifestation of the
forward-scattering optical theorem. Obviously, they can be interpreted as describing
the coherent propagation of the wave scattered by particle q towards particle p
through the discrete scattering medium. The presence of other particles on the line of
sight causes attenuation and, potentially, a change in polarization state of the wave.
The exponential form of the coherent transmission dyad in Eq. (8.5.12a) is again the
consequence of taking into account all orders of multiple forward scattering by un-
connected particles. The notable difference from Eqs. (8.3.10) and (8.3.11) is the
factor ,1 pqR  which is a reminder that the wave scattered by a particle is spherical,
whereas the coherent field is mathematically represented by a plane wave.

Equation (8.5.12a) can be summarized by the diagram on the right-hand side of
Fig. 8.5.6(g), thereby yielding the right-hand side of the equation in Fig. 8.5.6(f ). The
double rather than a single line indicates that the scalar factor pqpq RRk )iexp( 1  has
been replaced by the dyadic factor .])ˆ(iexp[ pqpqpq RRRκ�

In a quite similar way one can show that the sum of all diagrams of the kind
shown in Fig. 8.5.6(e) with the same fixed shaded part is given by the diagram shown
in Fig. 8.5.6(h).

It is now clear that the total contribution of all diagrams with three fixed common
particles t, q, and p to the dyadic correlation function can be represented by the dia-
gram in Fig. 8.5.6(i) or, in expanded form, by the statistical average of the following
product:
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where the subscripts r and r′  refer to the observation points r and ,r′  respectively.
After we have neglected all the diagrams with crossing connectors, computed the

contribution of all the diagrams with no connectors, and figured out how to calculate
the contributions from various diagrams with one or more vertical connectors, we are
perfectly positioned to complete the derivation of the dyadic correlation function. The
final result is shown in Fig. 8.5.8, in which the symbols Σ  have the usual meaning.
Owing to their appearance, the diagrams on the right-hand side of this equation are
called ladder diagrams. Therefore, this entire diagrammatic formula can be called the
ladder approximation for the dyadic correlation function.

8.6 Integral equation for the ladder specific coherency
dyadic

Unlike the dyadic correlation function, which is defined in terms of the electric field
vectors at two different observation points r and ,r′  the coherency dyadic is a statisti-
cal characteristic of the random electric field at a single observation point and is de-
fined as the time average of the coherency dyad of the total local electric field:
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Figure 8.5.8.  Ladder approximation for the dyadic correlation function.



Chapter 8192

ttC ��= ),()( rr ρ�
�

ttt �⊗�= ∗)],([),( rErE

 .)]([)( ,ξRrErE �⊗�= ∗       (8.6.1)

The ladder approximation for )(rC
�

 is shown in Fig. 8.6.1, in which the subscript L
stands for “ladder” and the curly brackets serve to indicate that .rr =′  The expanded
form of this approximation follows from Fig. 8.6.2:
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Figure 8.6.1.  Ladder approximation for the coherency dyadic.
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 ,�+       (8.6.2)

where

∗⊗= )]([)()( ccc rErErC
�

      (8.6.3)

is the coherent part of the coherency dyadic, and we have taken into account Eqs.
(A.7) and (A.8).

It is convenient to integrate over all positions of particle 1 using a local coordinate
system with origin at the observation point, integrate over all positions of particle 2
using a local coordinate system with origin at the origin of particle 1, integrate over
all positions of particle 3 using a local coordinate system with origin at the origin of
particle 2, etc. Using the notation introduced in Fig. 8.6.2 and taking into account that

,ˆddd 2
1 pp pr=        (8.6.4)

,ˆddd 2121
2
1221 RR RR=       (8.6.5)

and so on, we get from Eq. (8.6.2)
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Figure 8.6.2.  Geometry showing the quantities used in Eq. (8.6.2).
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where )ˆ,(L pr −Σ
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 is the ladder specific coherency dyadic defined by
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Note that p ranges from zero at the observation point to the corresponding value at the
point where the straight line in the p̂  direction crosses the boundary of the medium
(point 1C  in Fig. 8.6.2), 21R  ranges from zero at the origin of particle 1 to the corre-
sponding value at point ,2C  etc. Importantly, the ladder specific coherency dyadic
has the dimension of specific intensity or radiance (W m–2 sr–1) rather than that of
intensity (W m–2).

It can be easily verified that the ladder specific coherency dyadic satisfies the fol-
lowing integral equation:
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Indeed, using )()ˆˆ(δ c rsp C
�

+  as an initial approximation for ),ˆ,(L pr −Σ
�

 we can sub-
stitute it in the integral on the right-hand side of Eq. (8.6.8) and obtain an improved
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approximation. By continuing this iterative process, we arrive at Eq. (8.6.7), which is
simply the Neumann order-of-scattering expansion of the ladder specific coherency
dyadic with coherent field serving as the source of multiple scattering.

The interpretation of Eq. (8.6.8) is very transparent: the ladder specific coherency
dyadic for a direction p̂−  at a point r consists of a coherent part and an incoherent
part. The latter is a cumulative contribution of all particles located along the straight
line in the -p̂ direction and scattering radiation coming from all directions p′− ˆ  into
the direction .p̂−

8.7 Integro-differential equation for the diffuse
specific coherency dyadic

To derive the integro-differential form of Eq. (8.6.8), we introduce a q-axis as shown
in Fig. 8.7.1. This axis originates at point C and goes through the observation point in
the direction of the unit vector pq ˆˆ −=  (see Fig. 8.6.2). We can now rewrite Eq.
(8.6.8) as
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The diffuse specific coherency dyadic is defined as the difference between the full
ladder specific coherency dyadic and its coherent component:
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Differentiating both sides of Eq. (8.7.3) and applying the Leibniz rule,
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finally yields
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For further use, it is more convenient to rewrite Eqs. (8.7.1) and (8.7.4) in the
following form:
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Figure 8.7.1.  Geometry showing the quantities used in the derivation of the integro-differential
form of the RTE.
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where the path-length element dq is measured along the unit vector .q̂  Equation
(8.7.6) is the integro-differential radiative transfer equation for the diffuse specific
coherency dyadic.

8.8 Integral and integro-differential equations for the
diffuse specific coherency matrix

It follows from Eq. (8.7.3) that
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This means that only four out of nine components of the diffuse specific coherency
dyadic are nonzero and allows us to introduce the diffuse specific coherency matrix

d
~ρ  using the local coordinate system with origin at the observation point and orien-
tation identical to that of the laboratory coordinate system:
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Note that we use a tilde in order to distinguish between the specific coherency matrix
and the coherency matrix defined by Eq. (2.6.2). We can then rewrite Eqs. (8.7.3) and
(8.7.6) in the form of the integral and integro-differential equations for the diffuse
specific coherency matrix:
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where S is the amplitude scattering matrix, h is the coherent transmission amplitude



Chapter 8198

matrix given by Eq. (8.3.26), k is the matrix propagation constant given by Eqs.
(8.3.24), and

.
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8.9 Integral and integro-differential equations for the
diffuse specific coherency column vector

The next obvious step is to introduce the corresponding coherency column vectors d
~J

and cJ  in terms of d
~ρ  and :cρ

,
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(cf. Eq. (2.6.3)). Again we use a tilde to emphasize that d
~J  has the dimension of spe-

cific intensity. After lengthy, but simple algebraic manipulations, we get
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where

},)ˆ(exp{),ˆ( 0 ξ��−= ss JJ sns KH       (8.9.5)

ξ�� )ˆ(qJK  is the coherency extinction matrix averaged over the particle states, and
ξ�′� )ˆ,ˆ( qqJZ  is the ensemble average of the coherency phase matrix given by Eq.

(3.7.5). The column vector )(c rJ  satisfies the transfer equation (8.4.2).
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8.10 Integral and integro-differential equations for the
specific intensity column vector

Our final step is to define the diffuse specific intensity column vector and the coher-
ent Stokes column vector,
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(cf. Eqs. (2.6.4) and (2.6.5)), and rewrite Eqs. (8.9.3) and (8.9.4) in the form
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where ξ�� )ˆ(qK  is the ensemble average of the Stokes extinction matrix given by Eq.
(3.8.7) and ξ�′� )ˆ,ˆ( qqZ  is the ensemble average of the Stokes phase matrix given by
Eq. (3.7.10). The coherent Stokes column vector )(c rI  satisfies the transfer equation
(8.4.4).

Equations (8.4.4) and (8.10.4) can also be written as

),()ˆ()(ˆ c0c rsrs IKI ξ��−=∇⋅ n           (8.10.5)
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These equations represent the classical integro-differential form of the vector RTE
(VRTE) applicable to arbitrarily shaped and arbitrarily oriented particles. They were
initially introduced by Rozenberg (1955) on the basis of heuristic, phenomenological
considerations. In contrast, our detailed microphysical derivation is based on funda-
mental principles of statistical electromagnetics. It naturally replaces the original in-
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cident field as the source of multiple scattering in Eq. (8.1.13) by the decaying coher-
ent field in Fig. 8.5.4(c) and leads to the introduction of the diffuse specific intensity
column vector describing the photometric and polarimetric characteristics of the mul-
tiply scattered light (see the discussion in Section 8.12). Importantly, the microphysi-
cal derivation yields directly the integral form of the RTE, the integro-differential
form being a corollary of the integral form. This is a striking contrast to the phenome-
nological approach, which starts with a confusing notion of an elementary volume
element and the integro-differential form of the RTE (see Section 8.16).

It is often convenient to introduce the full specific intensity column vector,
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and rewrite Eqs. (8.10.5) and (8.10.6) as a single integro-differential equation:
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Accordingly, Eq. (8.10.3) takes the form
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In the absence of particles, the coherent Stokes column vector, the diffuse specific
intensity column vector, and the full specific intensity column vector become inde-
pendent of the spatial coordinates. This property follows directly from Eqs. (8.10.5),
(8.10.6), and (8.10.8) in the limit .00 →n

8.11 Summary of assumptions and approximations

Since the microphysical derivation of the VRTE is rather lengthy, it is useful to sum-
marize what specific assumptions and approximations had to be made at various
stages:

1. We assumed that the scattering medium is illuminated by a plane electromag-
netic wave. However, as will be discussed in Section 8.15, the VRTE remains
valid in the case of illumination by quasi-monochromatic light.

2. We assumed that each particle is located in the far-field zones of all the other
particles and that the observation point is also located in the far-field zones of
all the particles forming the scattering medium (Section 4.2).
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3. We neglected all scattering paths going through a particle two or more times
(the Twersky approximation). As we have seen in Section 8.1, doing this is
justified when the total number of particles in the medium is very large.

4. We assumed that the scattering system is ergodic and that averaging over
time can be replaced by averaging over particle positions and states.

5. We assumed that (i) the position and state of each particle are statistically in-
dependent of each other and of those of all the other particles, and (ii) the
spatial distribution of the particles throughout the medium is random and sta-
tistically uniform (Section 8.3).

6. We assumed that the scattering medium is convex, which assured that a wave
exiting the medium cannot re-enter it (Section 8.3).

7. We assumed that the number of particles N forming the scattering medium is
very large and replaced all factors of the type )!()!( knNnN −−−   by kN
(Sections 8.2 and 8.5).

8. We ignored all diagrams with crossing connectors in the diagrammatic ex-
pansion of the coherency dyadic (the ladder approximation, Sections 8.5 and
8.6).

Assumptions 2 and 7 imply that the overall size of the scattering medium must be
much greater than the wavelength, average particle size, and average distance be-
tween two neighboring particles. They ensure, in particular, that the exponential fac-
tors of the type )iexp( 1rk  oscillate many times over the distances traveled by the par-
ticles during the measurement, thereby leading to Eqs. (8.3.4) and (8.5.11) and, ulti-
mately, to Eqs. (8.3.8) and (8.5.12).

Randomly positioned particles located in the far-field zones of each other are
called independent scatterers. Thus, assumptions 2 and 5 explicitly indicate that the
requirement of independent scattering is a necessary condition of validity of the RTT.
It is these assumptions that are largely responsible for the fact that the VRTE contains
single-particle extinction and phase matrices rather than some “group” scattering
properties. In other words, each particle is identified as an individual scatterer with
scattering and absorption properties calculated under the implicit assumption that all
other particles do not exist. Hence the term “independent scattering”.

Another consequence of assumptions 2 and 5 is that the average particle number
density in the scattering medium must be rather small. Therefore, the VRTE may not
be expected to perform well for densely packed media (e.g., Tsang and Kong, 2001).

To justify approximation 8, let us consider, for example, the contributions of two
simple two-particle diagrams, shown in panels (a) and (b) of Fig. 8.11.1, to the coher-
ency dyadic of the total electric field. According to Eqs. (8.6.1) and (8.1.11), these
contributions are given by

ξ,
inc
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inc
0

122 ])ˆ,ˆ()ˆ,ˆ([])ˆ,ˆ()ˆ,ˆ([)( REsRRrEsRRr �⋅⋅⊗⋅⋅� ∗−
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����

    (8.11.1)
and
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respectively, where the notation follows that in Fig. 8.11.1(c). The main difference
between the expressions inside the angular brackets in these formulas is that the latter
contains a rapidly oscillating exponential factor, which changes with ir  and jr  much
faster than all other participating factors. The presence of this exponential factor
causes the contribution given by Eq. (8.11.2) to vanish upon the configurational aver-
aging. The reader can verify that this is true of any diagram with crossing connectors
and explains why their cumulative contribution to the specific coherency dyadic and
thus to the diffuse specific intensity column vector is negligible relative to the contri-
bution of the diagrams with vertical connectors.

An important exception is the situation where the observation point is located in-
finitely far from the scattering volume and is in the direction opposite to the direction

(a) (b)

i j

ji

i j

j i

O
y

z

x

R j
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Oi

Ri

rj

R ij

(c)

ri

r

Observation point

Figure 8.11.1.  Two-particle diagrams with vertical and crossing connectors.
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of incidence. Then the phase difference

)ˆˆ(1 ijji rrk Rs ⋅−−=∆

vanishes, the exponential factor becomes identically equal to unity, and the contribu-
tion of the diagrams with crossing connectors becomes comparable to the contribution
of the ladder diagrams. This remarkable effect, called coherent backscattering, will be
discussed specifically in Chapter 14.

The assumption that the scattering medium is statistically uniform simplified
greatly the derivation of the VRTE. It is reasonable to expect, however, that the
VRTE remains valid for an inhomogeneous medium provided that the macrophysical
properties of the medium change on spatial scales much greater than the average dis-
tance that light travels between two successive scattering events. In this case the ex-
tinction and phase matrices averaged over particle states and the particle number den-
sity become functions of spatial coordinates, and Eqs. (8.10.5), (8.10.6), (8.10.8) take
the form

),()ˆ,()()(ˆ c0c rsrrrs IKI ξ��−=∇⋅ n           (8.11.3)
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8.12 Physical meaning of the diffuse specific intensity
column vector and the coherent Stokes column vector

It might be fair to say that the way in which we derived the VRTE is rather mathe-
matical. Indeed, what we have done so far was to introduce the coherency dyadic and
a sequence of ad hoc derivative quantities and to see what equations these quantities
satisfy. However, the final result can be meaningful and useful only if we can demon-
strate the physical relevance of the quantities described by the VRTE.

It turns out that the physical interpretation of the diffuse specific intensity column
vector is rather transparent and follows directly from the integral form of the VRTE.
Indeed, imagine a well-collimated polarization-sensitive detector centered at the ob-
servation point and facing the direction )ˆ( ˆ sq ≠  (Figs. 8.7.1 and 8.12.1). Let S∆  be
the area of the sensitive surface of the detector and Ω∆  its (small) acceptance solid
angle. Each infinitesimal element of the detector surface reacts to the radiant energy
coming from the directions confined to a narrow cone with the small solid-angle
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aperture Ω∆  centered around .q̂  On the other hand, we can use Eq. (8.10.3) to write
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where p originates at the observation point r (Fig. 8.7.1) and the integration is per-
formed over the conical volume element V∆  having the solid-angle aperture Ω∆
and extending from the observation point to point C as shown in Fig. 8.12.1. The
right-hand side of Eq. (8.12.1) is simply the integral of the scattering signal per unit
surface area perpendicular to q̂  per unit time over all particles contained in the coni-
cal volume element. It is, thus, clear what quantity describes the total polarized signal
measured by the detector per unit time: it is the product

),ˆ,(~∆∆ d qrIΩS

V

C

Observation
point

Ω

S

Detector

V

∇

∇

∇

Figure 8.12.1.  Physical meaning of the diffuse specific intensity column vector.
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which has the dimension of power (W). The fact that the diffuse specific intensity
column vector can be measured by a polarization-sensitive optical device as well as
computed theoretically by solving the VRTE explains the practical usefulness of this
quantity in a great variety of applications.

Let us now consider a collimated detector aligned such that the direction ŝ  of the
external incident wave falls within its acceptance solid angle .∆Ω  Applying Eqs.
(8.10.9) and (8.10.7) to the conical volume element shown in Fig. 8.12.2, we con-
clude that the polarized signal measured by detector 1 per unit time is given by

),ˆ,(~ ∆∆)(∆ dc srr II ΩSS +     (8.12.2)

where r is the position vector of the observation point. This result explains the physi-
cal meaning of the coherent Stokes column vector. Indeed, if the acceptance solid
angle of the detector were infinitely small and the axis of the detector were perfectly
parallel to the incidence direction )ˆˆ( sq =  then the detector response would be equal
to ),(∆ c rIS  which means that the detector would measure only the Stokes column
vector of the coherent field.

ŝ

V

Observation
point

Detector 1

Detector 2

Detector 3

Figure 8.12.2.  Detectors facing the external light.
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The interpretation of Eqs. (8.4.5) and (8.12.2) is most transparent when the aver-
age extinction matrix is diagonal:

,)ˆ( ext ∆K ξξ ��=�� Cs     (8.12.3)

where ξ�� extC  is the extinction cross section per particle averaged over particle states.
This happens, for example, when the particles are spherically symmetric and are made
of an optically isotropic material. In this case Eq. (8.4.5) becomes

inc
ext0c )](exp[)( II rr sCn ξ��−=

,)](exp[ inc
ext Irsα−=           (8.12.4)

which means that the elements of the Stokes column vector of the coherent field are
exponentially attenuated with increasing s. The attenuation rates for all four compo-
nents are the same, which means that the polarization state of the coherent field does
not change with s. Equation (8.12.4) is the standard Bouguer–Beer law, in which

][ abssca0ext0ext ξξξα ��+��=��= CCnCn              (8.12.5)

is the attenuation (or extinction) coefficient. We see that the exponential attenuation
of the Stokes parameters of the coherent field is an inalienable property of all scatter-
ing media, even those composed of nonabsorbing particles with .0abs =�� ξC  The
attenuation is a combined result of scattering of the coherent field by particles in all
directions and, possibly, absorption inside the particles. It is also important to remem-
ber that it was the inclusion of all orders of multiple scattering in the coherent field
that ultimately led to the exponential attenuation in the Bouguer–Beer law (8.12.4) as
well as to the exponential s-dependence of the general coherent transmission matrix
(8.4.6).

In general, the extinction matrix is not diagonal and can explicitly depend on the
propagation direction. This occurs, for example, when the scattering medium is com-
posed of nonrandomly oriented nonspherical particles. Then the coherent transmission
matrix H in Eq. (8.4.5) may also have nonzero off-diagonal elements, thereby yield-
ing different attenuation rates for different components of the Stokes column vector
and causing a change in the polarization state of the coherent field with increasing s.
This effect is called dichroism. A typical example of dichroic scattering media are
clouds of nonspherical interstellar grains preferentially oriented by galactic magnetic
fields. Unpolarized light emitted by spherically symmetric stars becomes partially
polarized after it passes one or several such dust clouds. Observations of this phe-
nomenon, traditionally called interstellar polarization, can provide valuable informa-
tion about sizes, shapes, and refractive indices of cosmic dust particles (Martin, 1978;
Dolginov et al., 1995).

In reality, Ω∆  is never equal to zero, and detectors always pick up at least some
of the diffuse light. Still if both Ω∆  and )ˆ,(~

d srI  are sufficiently small and )(c rI  is

sufficiently large then the response of a detector facing the incident light is mostly
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determined by the Stokes column vector of the coherent field and is given by the first
term of Eq. (8.12.2). It is reasonable to expect that this happens when the detector is
located close to the volume boundary illuminated by the incident light (detector 2 in
Fig. 8.12.2) so that the coherent field is still weakly attenuated and there is not much
diffuse light propagating in directions close to the direction of incidence .ŝ

As the detector moves farther from the boundary (detector 1), the coherent field is
increasingly attenuated and more diffuse light propagates in directions close to ,ŝ
thereby making the second term in Eq. (8.12.2) comparable to the first term. Ulti-
mately, when the detector is placed deeply inside an optically thick medium (detector
3), the detector response is heavily dominated by the diffuse light and is given by the
second term of Eq. (8.12.2).

We chose to discuss the physical meaning of )ˆ,(~
d qrI  and )(c rI  in terms of the

concept of a detector of electromagnetic energy just to emphasize the polarization
content of these quantities. It is clear, however, that they describe the directional flow
of electromagnetic radiation through an arbitrary element of surface area and can be
used to quantify the energy budget of objects such as cloud and aerosol layers in
planetary atmospheres. This explains the usefulness of the RTE in radiation balance
as well as remote sensing and particle characterization applications.

The fundamental difference between the coherent Stokes column vector and the
diffuse specific intensity column vector is that the former describes a monodirectional
whereas the latter describes an uncollimated flow of electromagnetic energy. In par-
ticular, the first element of the coherent Stokes column vector, i.e., the coherent inten-
sity ),(c rI  is the electromagnetic power per unit area of a small surface element per-
pendicular to ,ŝ  whereas the first element of the diffuse specific intensity column
vector, i.e., the diffuse specific intensity ),ˆ,(~

d qrI  is the electromagnetic power per
unit area of a small surface element perpendicular to q̂  per one steradian of a small
solid angle centered around q̂  (Fig. 8.12.3).

The intensity can be considered to be the limit of a “highly collimated” specific
intensity, which explains the presence of the solid-angle delta-function factor )ˆˆδ( sq −
in the definition of the full specific intensity vector, Eq. (8.10.7). The dimension of a

q̂

S

∇

S

∇

ŝ Ω

∇

(a) (b)

Figure 8.12.3.  Physical meaning of (a) coherent intensity and (b) diffuse specific intensity.
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delta function is that of the inverse of its argument, which ensures that the dimension
of the product )()ˆˆδ( c rsq I−  is that of specific intensity.

Perhaps the most important conclusion to remember is as follows. Since the mi-
crophysical derivation of the RTE involved statistical averaging over particle states
and positions, neither the coherent Stokes column vector nor the diffuse specific in-
tensity column vector characterize the instantaneous distribution of the radiation field
inside the scattering medium. Instead, they characterize the directional flow of elec-
tromagnetic radiation averaged over a sufficiently long period of time. Although the
minimal averaging time necessary to ensure ergodicity may be different for different
scattering systems, it is safe to say that the longer the averaging time the more accu-
rate should be the theoretical prediction based on the RTE.1

8.13 Energy conservation

A fundamental and practically important property of the RTE is that it satisfies pre-
cisely the energy conservation law. Indeed, using the vector identity

, )( aaa ⋅∇−⋅∇=∇⋅ fff           (8.13.1)

where f is any scalar function of spatial coordinates, and taking into account that q̂  is
a constant vector, we can rewrite Eq. (8.11.5) in the form
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  ).ˆ,(~)ˆ,ˆ,(ˆd )(
4  

0 qrqqrqr ′�′�′+ IZ ξ
π

n           (8.13.2)

Let us now introduce the flux density vector as

).ˆ,(~ˆˆd)(
4  

qrqqrF I=
π

          (8.13.3)

Obviously, the product Sd)(ˆ rFp ⋅  gives the amount and the direction of the net flow
of power through a surface element dS normal to p̂  (see Fig. 8.13.1). Integrating both
sides of Eq. (8.13.2) over all directions q̂  and recalling Eqs. (3.9.9)–(3.9.11), we ob-
tain

).,(~)ˆ,(ˆd )()( abs
4  

0 qrqrqrrF ICn ξ
π

��=⋅∇−           (8.13.4)

The physical meaning of this formula is very transparent: the net inflow of electro-
                                                
1 Note that accumulating a signal over an extended period of time is often used to improve the
accuracy of a measurement by reducing the effect of random noise. However, the situation with
the RTT is fundamentally different in that averaging the signal over an extended period of time
is necessary to ensure the very applicability of the RTE.
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magnetic power per unit volume is equal to the total power absorbed per unit volume.
If the particles forming the scattering medium are nonabsorbing so that ξ�� )ˆ,(abs qrC

,0=  then the flux density vector is divergence-free:

.0)( =⋅∇ rF           (8.13.5)

This is a manifestation of the conservation of the power flux, which means that the
amount of electromagnetic energy entering a volume element per unit time is equal to
the amount of electromagnetic energy leaving the volume element per unit time. This
important result can be used for testing various numerical techniques for solving the
RTE and is a particularly attractive feature of the RTT.

The previous discussion clearly shows that the VRTE follows from the Maxwell
equations only after several simplifying assumptions are made. Still it is very re-
warding to see that these approximations are sufficiently consistent with each other in
that the final result fully complies with the energy conservation law.

8.14 External observation points

The derivation of the VRTE presented in the previous sections implied that the obser-
vation point was located inside the scattering volume. In this section we will explain
how the solution of the VRTE can be used to calculate the response of a collimated
detector placed outside the scattering volume. This problem is important in practice
since scattering objects are often studied using external detectors of electromagnetic
radiation. Typical examples are remote-sensing observations of the terrestrial atmos-
phere from earth-orbiting satellites, ground-based telescopic observations of other
planets and various astrophysical objects, and bi-directional (polarized) reflectometry
of particle suspensions and particulate surfaces.

p̂

F

dS

Figure 8.13.1.  Electromagnetic power flow through an elementary surface element.
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8.14.1 Coherent field

Let us first consider the computation of the coherent field at an external observation
point .V∉r  The analysis described in Sections 8.2 and 8.3 indicates that only for-
ward-scattering particles that lie on the line connecting the source of illumination and
the observation point can contribute to the coherent field. Hence, let us consider three
possible types of location of the observation point with respect to the scattering vol-
ume as shown in Fig. 8.14.1. The line connecting the source of illumination and ob-
servation point 1 does not go through the scattering volume, whereas the lines through
the source of illumination and observation points 2 and 3 do. However, only in the
case of observation point 3 does the scattering volume lie between the source of illu-
mination and the observation point. Therefore, repeating the derivation of Sections
8.2 and 8.3 yields
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          (8.14.3)

where “ex” stands for external and s∆  is the length of the light path inside the scat-
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Figure 8.14.1.  Coherency field at external observation points.
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tering volume as shown in Fig. 8.14.1. This result can be summarized by the follow-
ing formula:
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where s∆  is a function of r.
By analogy with Section 8.4, Eq. (8.14.4) can be rewritten in terms of the Stokes

column vector of the external coherent field :)(ex
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where incI  is the Stokes column vector of the incident field. The physical interpreta-
tion of this formula is very simple: the intensity of the coherent wave is exponentially
attenuated and its polarization state changes if and only if the wave travels through
the scattering medium.

8.14.2 Ladder coherency dyadic

The derivation of the ladder approximation for the coherency dyadic

ξ,
ex )]([)()( RrErEr �⊗�= ∗C

�

defined in terms of the total electric field )(rE  at an external observation point
V    ∉r  is very similar to that for the coherency dyadic at an internal point, as de-

scribed in sections 8.5 and 8.6. The only significant difference is that now only a part
of the line connecting the observation point and particle 1 (see Fig. 8.14.2) lies inside
the scattering volume (cf. Fig. 8.6.2). Therefore, the final result is as follows:

,)ˆ ,(ˆd    )( ex
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C           (8.14.6)

where the vector p originates at the observation point, ppp =ˆ  is the unit vector in
the direction of p, and the external ladder specific coherency dyadic is the sum of the
coherent and diffuse parts:
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The coherent part is given by
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where
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is the coherent part of the “external” coherency dyadic )(ex rC
�

 and the external co-
herent field )(ex

c rE  is given by Eq. (8.14.4). The diffuse part of the external ladder
specific coherency dyadic vanishes if ),(ˆ rp Ω∉  where )(rΩ  is the solid angle
subtended by the scattering volume when it is viewed from the external observation
point r (see Fig. 8.14.2). Otherwise it is given by
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Figure 8.14.2.  Coherency dyadic at an external observation point.
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The notation is clear from Fig. 8.14.2. Note that 21R  ranges from zero at the origin of
particle 1 to the corresponding value at point ,2C  32R  ranges from zero at the origin
of particle 2 to the corresponding value at point ,3C  etc.

Direct comparison of Eq. (8.14.10) with Eq. (8.6.7) leads us to a fundamental
conclusion: the external diffuse specific coherency dyadic for a direction p̂−  such
that )(ˆ rp Ω∈  is equal to the internal diffuse specific coherency dyadic at a boundary
point C where the line drawn through the observation point in the direction p̂  enters
the scattering volume (see Fig. 8.14.2). Thus,
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where Cr  is the position vector of the point C (see Fig. 8.14.2). Obviously, Cr  is a
function of r and .p̂  Equations (8.14.6) and (8.14.7) then demonstrate that the ladder
coherency dyadic at the external observation point can be expressed in terms of the
internal diffuse specific coherency dyadic at those boundary points of the scattering
volume that are “visible” from the observation point (the part of the boundary visible
from the observation point r is highlighted in Fig. 8.14.2).  

8.14.3 Specific intensity column vector

It is straightforward to rewrite Eqs. (8.14.7)–(8.14.9) and Eq. (8.14.11) in terms of the
full specific intensity column vector at the external observation point:
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where
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is the external coherent specific intensity column vector,
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is the external diffuse specific intensity column vector, )(ex
c rI  is given by Eq.

(8.14.5), and 0 is a 14×  zero column. As was the case with the external diffuse spe-
cific coherency dyadic, the external diffuse specific intensity column vector for a di-
rection p̂−  such that )(ˆ rp Ω∈  is equal to the internal diffuse specific intensity col-
umn vector at that boundary point where the line drawn through the observation point
in the direction p̂  enters the scattering volume (Fig. 8.14.2). Furthermore, it vanishes
for all directions p̂−  such that ).(ˆ rp Ω∉

8.14.4 Discussion

The physical significance of these results is illustrated in Fig. 8.14.3. All four external
polarization-sensitive, well-collimated detectors have a small surface area S∆  and a
small angular aperture. However, the orientations of the detectors and their positions
are different. In order to emphasize the difference in the orientations of the four de-
tector acceptance solid angles, we denote the latter as ,∆ 1Ω  ,∆ 2Ω  ,∆ 3Ω  and ,∆ 4Ω
whereas the position vectors of the respective observation points will be denoted as

,1r  ,2r  ,3r  and .4r
Detector 1 faces the incident wave, but its acceptance solid angle 1∆Ω  captures

no boundary points of the scattering volume. Therefore, the polarization signal meas-
ured by the first detector per unit time is given by

.∆   incI1 Signal S=       (8.14.15)

Detector 2 is positioned and oriented such that its acceptance solid angle 2∆Ω
does not capture the incidence direction, but captures all points of the part of the
boundary denoted .2S  Therefore, the polarized signal measured by this detector per
unit time is given by
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ex
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pprrp −= CS I
Ω

           (8.14.16)

where, as before, the unit vector p̂  originates at observation point 2 and VC ∈r  is
the position vector of the point where the line drawn through the observation point in
the direction p̂  crosses the boundary of the scattering volume (see Fig. 8.14.2).

The acceptance solid angle of detector 3 captures both the incidence direction and
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all points of the part of the boundary denoted .3S  Therefore, the polarized signal
measured by detector 3 per unit time is

inc
30 ])ˆ()(∆exp[∆  IK  3 Signal ξ��−= srsnS ],ˆ ),ˆ ,([~ˆd ∆ 3d

∆  3

pprrp −+ CS I
Ω

      (8.14.17)

where, as before, )(∆ 3rs  is the length of the path traveled by the coherent wave inside
the scattering volume before it reaches observation point 3 (see Fig. 8.14.1).

Finally, neither the incidence direction nor any boundary point is captured by the
acceptance solid angle of detector 4. Therefore, this detector measures no signal:

.  0  4 Signal =     (8.14.18)

After the VRTE has been solved and, as a result, the diffuse specific intensity col-
umn vector is known at all points of the scattering volume, Eqs. (8.14.15)–(8.14.18)
can be used to calculate the polarization response of an external collimated detector
arbitrarily oriented and positioned with respect to the scattering volume V. Although
heuristic equivalents of these formulas have been widely used in the framework of the

ŝ

ŝ
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Figure 8.14.3.  Polarized signal measured by an external collimated detector depends on the
detector position and orientation with respect to the scattering volume.
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phenomenological RTT (see the discussion in Section 18.16), it is highly rewarding to
see that they can be consistently derived using the microphysical approach.

8.14.5 Illustrative example:  first-order scattering

To give an example of applying the above formulas, let us now assume that the num-
ber of particles in the scattering volume is sufficiently small that

|])ˆ([| 0 pqLn ξ�� qK  � 1   (8.14.19)

and

|])ˆ,ˆ([| 0 pqLn ξ�′� qqZ  � 1       (8.14.20)

for p, q = 1, …, 4 and for any q̂  and ,q̂′  where L is the largest linear dimension of the
volume element. As a consequence, one may neglect all terms proportional to powers
of 0n  higher than the first and, thus, all orders of scattering higher than the first.

The scattering situation is shown schematically in Fig. 8.14.4, in which the di-
ameter of the sensitive area of the detectors is assumed to be significantly greater than
L and their angular aperture Ω∆  is large enough to encompass the entire scattering
volume. We will further assume that the distance r from the volume element to the
detectors is much greater than L so that the waves scattered by different particles to-
ward either detector propagate in essentially the same direction and the distance from
the observation point to any particle inside the volume element is approximately the
same. The electromagnetic response of either detector is calculated by integrating the
full specific intensity column vector over the detector sensitive area and angular ap-
erture. Let us recall the integral form of the VRTE, Eq. (8.10.3). We can now use Eqs.
(8.14.5) and (8.14.14) to derive that the polarized signal measured by detector 1 per
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Figure 8.14.4.  First-order scattering.
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unit time is given by

,)ˆ ,ˆ(∆)ˆ(∆    inc
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SNS    (8.14.21)

whereas that measured by detector 2 per unit time is given by
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r
S   (8.14.22)

where VnN 0=  is the total number of particles in the volume element. Not surpris-
ingly, this is the same result as that obtained in the framework of the first-order-
scattering approximation for a small volume element, Eqs. (7.7.13) and (7.7.14).

8.15 Other types of illumination

The above microphysical derivation of the VRTE was explicitly based on the as-
sumption that the incident light is a plane electromagnetic wave. This was done pri-
marily to make more natural the introduction of concepts such as the coherent field
and to facilitate the comparison of the microphysical and phenomenological ap-
proaches to radiative transfer. However, we could have made the derivation of the
VRTE more general by using the terminology introduced in Section 3.10. Specifi-
cally, one can express the total electric field everywhere in space and at any moment
in terms of the transformation dyadic of the entire multi-particle group,
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(cf. Eq. (8.1.13)). The transformation dyadic depends on time explicitly in order to
account for the temporal variability of the multi-particle configuration. Equation
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(8.15.2) is valid at any point located in the far-field zones of all the particles forming
the scattering medium. The next step is to consider one of the illumination scenarios
discussed in Sections 3.10–3.12 and compute the time average of the coherency dy-
adic of the total field by using the diagrammatic technique introduced in the previous
sections and the ladder approximation. This procedure also yields the VRTE.

Specifically, let us first assume that the discrete scattering medium is illuminated
by a parallel quasi-monochromatic beam and that significant changes of the transfor-
mation dyadic occur much more slowly than the random oscillations of the electric
field amplitude. It is then straightforward to show that Eqs. (8.4.5), (8.10.3) and
(8.10.4) remain unchanged provided that the Stokes column vector of the incident
plane wave in Eq. (8.4.5) is replaced by the time-averaged Stokes column vector of
the quasi-monochromatic beam.

Second, if the medium is illuminated by N quasi-monochromatic beams with ar-
bitrary propagation directions then it can be shown that the total specific intensity
column vector is given by

),ˆ,(~)ˆ,(~
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II
=

=     (8.15.3)

where

)ˆ,(~)()ˆˆ(δ)ˆ,(~
d c qrrsqqr iiii III +−=     (8.15.4)

is the ith “partial” specific intensity column vector obtained by solving the VRTE
under the assumption that the scattering medium is illuminated only by the ith quasi-
monochromatic beam propagating in the direction .ˆ is

Finally, Eq. (8.15.3) remains valid if the medium is illuminated by N plane elec-
tromagnetic waves provided that all of them have different angular frequencies.

These important properties of the VRTE can be used to extend significantly its
range of applications. In particular, the VRTE can be applied to situations in which
the external source of light is multispectral, such as the sun.

8.16 Phenomenological approach to radiative transfer

After we have presented the detailed derivation of the VRTE from the Maxwell equa-
tions, it is interesting to compare the self-consistent microphysical methodology with
the traditional phenomenological approach to radiative transfer (e.g., Chandrasekhar,
1950; Rozenberg, 1955; Preisendorfer, 1965). Since the latter cannot be used to de-
rive many facts that appear as corollaries of classical electromagnetics in the frame-
work of the microphysical approach, one has to postulate them. For example, it natu-
rally follows from the microphysical derivation that the average (coherent) field in-
side the discrete random medium is exponentially attenuated and serves to replace the
constant-amplitude incident field as the de facto source of multiple scattering (cf. the
original order-of-scattering expansion (8.1.11), in which multiple scattering is initi-
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ated by the incident field, and Diagram 8.5.4(c), in which the source of multiple scat-
tering is the coherent field). In contrast, the phenomenological approach begins with a
postulate that the incident parallel beam of light is exponentially attenuated as it
propagates through the medium and serves as the initial source of multiple scattering.

Another postulate of the phenomenological approach is that the diffuse radiation
field at each point r inside the scattering medium and at each moment in time can be
represented by a collection of elementary “rays” with a continuous distribution of
propagation directions q̂  and can be characterized by the local four-component dif-
fuse specific intensity column vector:
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The elementary rays are postulated to be mutually incoherent and make independent
contributions to ).ˆ,(~

d  qrI  The elements ),ˆ,(~
d qrQ  ),ˆ,(~

d qrU  and )ˆ,(~
d qrV  describe the

polarization state of the ray propagating in the direction q̂  through the observation
point specified by the position vector r, whereas the product

)ˆ,(~ddd d qrItS Ω

 gives the amount of electromagnetic energy transported through a surface element
Sd  normal to q̂  and centered at r in a time interval td  in all directions confined to a

solid angle element Ωd  centered at the direction of propagation .q̂  All elements of
the specific intensity column vector have the dimension of radiance. The direct
propagation of the incident parallel beam of light through the medium is described by
the “monodirectional” four-component Stokes column vector )(c rI  having the di-
mension of intensity.

Thus, there is a fundamental difference between how the phenomenological and
microphysical approaches treat the random radiation field. The phenomenological
approach begins with a postulate of existence of the diffuse specific intensity column
vector and the Stokes column vector of the direct light at each moment in time. In the
framework of the microphysical approach these quantities are derived from more fun-
damental ones and are shown to describe the directional flow of electromagnetic ra-
diation averaged over a sufficiently long period of time (Section 8.12).

It is easy to understand why the phenomenological way to introduce the specific
intensity column vector is wrong. At a moment of time ,1tt =  the particles constitut-
ing a turbid medium form a distinct configuration, as illustrated in Fig. 8.16.1. The
straight line extending through the observation point r in the 1q̂−  direction does not
go through any particle. Therefore, one has to conclude that

.)ˆ,(~
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1d 0I =
= tt

qr
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The straight line extending through the observation point in the 2q̂−  direction goes
through three particles, which suggests that

.)ˆ,(~
1

2d 0I ≠
= tt

qr

Thus, the phenomenological specific intensity column vector is not a continuous
function of propagation direction at any moment in time. Rather, it is the explicit av-
eraging of the coherency dyadic over particle positions in the microphysical approach
that ensures that the specific intensity column vector depends on propagation direc-
tion continuously.

Another reason why it is impossible to define an instantaneous diffuse specific
intensity column vector of the radiation field is as follows. The Stokes parameters can
only be defined for a transverse electromagnetic wave or a superposition of transverse
waves propagating in the same direction, whereas the instantaneous total field created
by an N-particle group at an observation point is a superposition of the incident plane
wave and N spherical waves coming from the N individual particles. The resulting
field is neither a plane nor a spherical wave with a specific propagation direction and
its electric and magnetic vectors are not always orthogonal, contrary to the assump-
tion made on p. 393 of Preisendorfer (1965). Again, it is the explicit averaging of the
coherency dyadic over particle positions in the microphysical approach that ultimately
allows one to quantify the polarization response of a detector of electromagnetic en-
ergy in terms of an incoherent sum of the Stokes parameters of the spherical waves
generated by the N individual particles.

q̂1

Incid
ent li

ght

Observation
point

q̂2

Figure 8.16.1.  Specific intensity column vector cannot be defined at a moment in time.
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The phenomenological RTT treats the medium filled with a large number of dis-
crete, sparsely and randomly distributed particles as continuous and locally homoge-
neous and is fundamentally based on the concept of an elementary (or differential)
volume element of the scattering medium. Specifically, it replaces the concept of sin-
gle scattering and absorption by an individual particle with the concept of single
scattering and absorption by an elementary volume element. It is assumed that the
result of scattering is not the electromagnetic transformation of a plane incident wave
into a spherical scattered wave in the far-field zone of the volume element, but rather
the transformation of the diffuse specific intensity column vector of the incident light
into the diffuse specific intensity column vector of the scattered light. This assump-
tion appears to be especially artificial because the scattering transformation law is
then written in the form

)ˆ,(~
d qrI  ∝ )ˆ,(~)ˆ,ˆ( dd qrqq ′′ IZ V

and ),ˆ,ˆ(d qq ′VZ  called the phase matrix of the elementary volume element, is com-
puted from electromagnetics. Specifically, it is postulated that

,)ˆ,ˆ(d)ˆ,ˆ( 0d ξ�′�=′ qqqq ZZ VnV

where 0n  is the particle number density, Vd  is the size of the elementary volume
element, )ˆ,ˆ( qq ′Z  is the single-particle phase matrix describing the transformation of
an incident plane electromagnetic wave into the scattered spherical wave, and ξ���

denotes an average over all physically realizable particle states.
It is further postulated that the change of the Stokes column vector of direct light
)(c rI  over a differential length ds parallel to the incidence direction is caused by ex-

tinction and dichroism and can be described by Eq. (8.4.4) in which, again, the single-
particle extinction matrix is computed from Maxwell’s electromagnetics.

In addition, it is postulated that the cumulative change of the diffuse specific in-
tensity column vector over the length dq of an elementary cylindrical volume element
having bases of an area dA perpendicular to q̂  (see Fig. 8.16.2) is caused by:

q

dq

q̂

)ˆd ˆ(
~

d qq,r q+I

)ˆ(
~

d  qr,I

dA

Figure 8.16.2.  Phenomenological interpretation of the RTE.
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● The effect of extinction and dichroism.
● The contribution of the diffuse light illuminating the volume element from all

directions q′ˆ  and scattered into the direction .q̂
● The contribution of the attenuated external beam scattered into the direction

.q̂

These three components are described by the first, second, and third terms, respec-
tively, on the right-hand side of Eq. (8.10.4).

It is thus clear that the phenomenological approach is based on a rather eclectic
combination of concepts borrowed from pure radiometry (light rays as geometrical
trajectories along which radiant energy is assumed to be propagated, the concept of
incoherent radiance) and pure electromagnetism (electromagnetic scattering of plane
waves, Stokes parameters, phase and extinction matrices).

The concept of an elementary volume element is implicitly based on the modified
uncorrelated single-scattering approximation discussed in Section 7.3. A fundamental
problem here is that the MUSSA is only valid in the far-field zone of the elementary
volume element as a whole and cannot be applied to adjacent volume elements having
common boundaries. In particular, we have seen in Section 7.6 that the far-field zone
of a volume element may begin at a distance exceeding the volume element’s size by
several orders of magnitude.

Another problem is caused by the assumption that the RTE describes the instanta-
neous state of the radiation field. Indeed, in order to justify the use of the phase and
extinction matrices averaged over all particle states in Eqs. (8.4.4) and (8.10.4), one
has to require that all physically realizable particle states (sizes, shapes, orientations,
refractive indices, etc.) be well represented in each elementary volume element at any
moment in time (e.g., West et al., 1994). Since this requirement may imply an unre-
alistically large size of an elementary volume element, it has been concluded that the
RTE may need a substantial modification when it is applied to scattering media such
as terrestrial water clouds (e.g., Knyazikhin et al., 2002). However, this conclusion
does not take into account the following important consequences of the microphysical
derivation of the RTE: (i) the concept of an elementary volume element has no actual
relevance to the RTT, and (ii) the RTE describes a time average of the directional
flow of electromagnetic radiation rather than its instantaneous pattern. Therefore, the
range of applicability of the RTE is significantly wider than what the phenomenologi-
cal approach may imply.

Of course, there is nothing wrong with the conception of postulating certain basic
physical laws. In fact, any advanced physical theory must ultimately be based on a
self-consistent set of well-defined axioms and have the formal structure of a mathe-
matical theory (e.g., Sappes, 2002). The seemingly self-evident phenomenological
concepts of radiative transfer have been taken for granted for more than a century
and, with a few exceptions, have been traditionally presented as something that does
not need proof. However, postulating phenomenological concepts such as the notion
of the diffuse specific intensity or the Bouguer–Beer extinction law has the adverse
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effect of implying that the transfer of electromagnetic energy in discrete random me-
dia is controlled by fundamental physical laws other than the Maxwell equations.

One might argue that the microphysical derivation of the RTE from the Maxwell
equations is too complicated and, unlike a half-a-page phenomenological “deriva-
tion”, requires many pages of formulas and graphs. However, the microphysical ap-
proach has several decisive advantages. First, one can make certain that the RTT does
not need any basic physical postulates other than the Maxwell equations. Second, the
exact physical meaning of all participating quantities and their relation to more fun-
damental physical quantities become clear and unambiguous. Third, the range of ap-
plicability of the RTE becomes well characterized. Fourth, it becomes possible to
establish the relation of the RTT to the effect of coherent backscattering (Chapter 14).

Another phenomenological way to introduce the RTE is to invoke Einstein’s con-
cept of photons (e.g., Ivanov, 1973), describe the radiation field in terms of a “photon
gas”, and postulate that the photon gas satisfies the Boltzmann kinetic equation (see,
for example, Pomraning, 1991; Fernández et al., 1993; Thomas and Stamnes, 1999;
Mobley and Vo-Dinh, 2003). This approach is based on associating energy transport
with the directional flow of localized particles of light, photons, each carrying energy
of amount ,νh  where h is Planck’s constant and ν  is frequency. The diffuse specific
intensity is then given by

 ),ˆ,()ˆ,(~
d qrqr fchI ν=

 where c is the speed of light and )ˆ,( qrf  is the photon distribution function such that
)ˆ,(dd qrfcS Ω  is the number of photons crossing an element of surface area Sd

normal to q̂  and centered at r in directions confined to an element of solid angle Ωd
centered around q̂  per unit time.

The concept of a photon as a localized particle of light was proposed by Albert
Einstein in his 1905 paper on the photoelectric effect. Specifically, he suggested that
the energy of a light ray spreading out from a point source is not continuously distrib-
uted over an increasing space but consists of a finite number of energy quanta which
are localized at points in space (see Arons and Peppard, 1965).

However, it is known from quantum electrodynamics that there is no position op-
erator for a photon and that it is impossible to introduce a photon wave function in the
coordinate representation (e.g., Section 2.2 of Akhiezer and Berestetskii, 1965). In
fact, photons are quantum excitations of the normal modes of the electromagnetic
field and as such are associated with plane waves of definite wave vector and definite
polarization but infinite lateral extent (Mandel and Wolf, 1995). This means that
photons are not localized particles (Lamb, 1995; see also Section 8.18 below). Thus,
the quantum theory of radiation does not allow one to associate the position variable r
with a photon and even to speak about the probability of finding a photon at a par-
ticular point in space (Wolf, 1978). It is, therefore, impossible to define )ˆ,( qrf  as a
function of photon coordinates and claim that it satisfies the Boltzmann transport
equation.
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Another fundamental problem with the “photonic” approach is that it is unclear
why the phase and extinction matrices entering the VRTE are still defined and com-
puted in the framework of classical macroscopic electromagnetics. Furthermore, it
remains unknown whether there is a relation between the RTT and the effect of co-
herent backscattering.

It is worth emphasizing again that the detailed microphysical derivation of the
VRTE described in this chapter leads quite naturally to the definition of the coherent
and diffuse Stokes column vectors, clarifies the physical meaning of all quantities
entering Eqs. (8.10.5) and (8.10.6), and makes unnecessary the multiple controversial
assumptions of the phenomenological approach. In particular, it eliminates the need to
introduce the troublesome and vague notion of an elementary volume element and
avoids completely the use of the misleading “photonic” language.

8.17 Scattering media with thermal emission

If the absolute temperature of the particles forming the scattering medium becomes
sufficiently high, the emitted component of the total radiation field can become com-
parable to the multiply scattered component, thereby making necessary a modification
of the VRTE. This is usually accomplished by assuming that the emission process is
not related directly to the scattering process. This implies that the light emitted by a
particle at an angular frequency ω  is optically independent of the light incident on
and scattered by the particle at this frequency and depends only on the particle tem-
perature, size, shape, orientation, and refractive index.2 As a result, the radiation
emitted by the particle is added incoherently to the radiation scattered by the particle,
thereby contributing another term to the right-hand side of Eq. (8.11.5):

) ,ˆ ,(~) ,ˆ ,()() ,ˆ ,(~ˆ 0 ωωω ξ qrqrrqrq IKI ��−=∇⋅ n

 ) ,ˆ ,(~) ,ˆ ,ˆ ,(ˆd )(
4  

0 ωω ξ
π

qrqqrqr ′�′�′+ IZn

 ,] ),( ,ˆ ,[)( e0 ξω ��+ rqrr Tn K           (8.17.1)

where ξω �� ] ),( ,ˆ ,[e rqr TK  is the single-particle emission Stokes column vector (Sec-
tion 3.13) averaged over particle states. Note that we have allowed the particle tem-
perature to vary with r and added the argument ω  to explicitly indicate the depend-
ence of the radiation field on angular frequency. The dimension of the elements of the
frequency-dependent specific intensity column vector is W m–2 sr–1 rad–1 s rather than
W m–2 sr–1.

In the following chapters, we will study only the emission-free VRTE (8.11.5),
thereby assuming that the particle temperature is not high enough to make the emis-
                                                
2 The particle temperature may itself depend on the characteristics of the incident radiation,
most of all on its intensity and spectral distribution.
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sion component of the radiation field comparable to the multiply scattered one.

8.18 Historical notes and further reading

The derivation of the VRTE in this chapter largely follows that given in Mishchenko
(2002, 2003). Important early contributions to the microphysical derivation of the
VRTE for discrete random media were made by Borovoy (1966) and Dolginov et al.
(1970). Many aspects of the multiple-scattering theory for discrete random media are
discussed by Tsang and Kong (2001).

The phenomenological RTT is outlined in the classical texts by Kourganoff (1952,
1969), Chandrasekhar (1950), Preisendorfer (1965), and Ishimaru (1978) (see also
Mobley, 1994; Thomas and Stamnes, 1999). The early history of the phenomenologi-
cal theory of radiative transfer is described by Ivanov (1994). He traces the origin of
the simplest form of the RTE (no account of polarization, isotropically scattering par-
ticles) to papers by Lommel (1887) and Chwolson (1889). Unfortunately, those early
publications have remained largely unnoticed, and the first introduction of the RTE
has traditionally been attributed to the paper by Schuster (1905).

Gans (1924) was the first to consider the transfer of polarized light in a plane-
parallel Rayleigh-scattering atmosphere; however, he analyzed only the special case
of perpendicularly incident light and considered only the first two components of the
Stokes column vector. The case of arbitrary illumination and arbitrary polarization
was first studied by Chandrasekhar (1947a). Rozenberg (1955) introduced the most
general form of the VRTE for scattering media composed of arbitrarily shaped and
arbitrarily oriented particles.

The concept of photons has been thoroughly misused in the phenomenological
treatment of radiative transfer. It is important to remember that photons are not local-
ized particles (e.g., Section 4.10 of Bohm, 1951; §88 of Kramers, 1957; Section 5.1 of
Power, 1964), which makes the words like “photon position”, “photon path”, “photon
trajectory”, or “local flow of photons” physically meaningless. Although the term
“photon” is ubiquitous in quantum electrodynamics and quantum optics, there it
means nothing more than a quantum of a single normal mode of the electromagnetic
field (Mandel and Wolf, 1995). Since the normal modes have an infinite lateral ex-
tent, they cannot be interpreted as “particles”. If the solution of a specific problem
does require quantization of the electromagnetic field then the most one can say is
that the photons represent a discrete character of light in that specific application but
not a “particle” character.

If one is tempted to use the word “photon” to describe a relatively localized
“packet” of radiation, it should be remembered that the Fourier analysis requires a
wavepacket to consist of a superposition of normal modes. The drawback of this
“particle” interpretation is that each source emits its own kind of wavepackets, which
leaves one with a wide variety of analytical representations of a wavepacket or worse,
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no analytical representation at all (Meystre and Sargent, 1999).
The quest for a photon as a universal localized quantum of light appears to be as

hopeless now as it has ever been, as revealed by the October 2003 supplement to Op-
tics and Photonics News titled “The Nature of Light: What is a Photon?” (Roychoud-
huri and Roy, 2003). Unfortunately, most undergraduate textbooks on modern physics
and even many graduate texts remain profoundly confusing and often misleading on
this issue.3 Their authors keep relishing the so-called “wave-particle duality” of light
which was discarded following the development of quantum electrodynamics seven
decades ago. Furthermore, they appear not to realize that one does not need the con-
cept of a photon as a particle of light to explain the photoelectric and Compton effects
and that this concept is inconsistent with the Planck energy distribution law, the facts
established in the 1910s and 1920s (see, for example, Kidd et al., 1989 and references
therein).4 An excellent remedy to these textbooks are the thorough discussions of the
concept of a photon and its history in Kidd et al. (1989) and Lamb (1995). In the for-
mer, the authors boldly assert that elementary texts would do well to drop the corpus-
cular photon (except, perhaps, as a historical topic) and switch to the semi-classical
treatment as the first approximation to the modern quantum electrodynamics ap-
proach.

Unfortunately, the word “photon” is invoked most commonly in circumstances in
which the electromagnetic field is classical and has no quantum character whatsoever.
The word “photon” then serves as nothing more than a catchy synonym for “light”.
This usage of the word “photon” is especially misleading and should be avoided.

An interesting theoretical study of the range of applicability of the RTE was per-
formed by Roux et al. (2001). They used an exact Monte-Carlo solution of the elec-
tromagnetic scattering problem for a slab containing randomly located parallel infinite
cylinders and compared the results with those obtained using the corresponding two-
dimensional radiative transfer theory (Mishchenko et al., 1992).

There have been a few successful attempts to solve numerically the general VRTE
without making overly restrictive assumptions about the morphology of the scattering
medium. They have been documented in Haferman et al. (1997), Emde et al. (2004),
and Battaglia and Mantovani (2005).

In this chapter, we derived the RTE for a medium composed of discrete scattering
particles. However, a similar equation describes multiple scattering of light in a con-
tinuous medium with random fluctuations of the refractive index. The reader is re-
ferred to Barabanenkov et al. (1972), Papanicolaou and Burridge (1975), and Fante
(1981) for discussions of this other branch of the RTT.

                                                
3 The textbook by Lipson et al. (2001) is a rare exception.
4 For modern semi-classical treatments of the photoelectric effect, see Chapter 11 of Schiff
(1968) and the paper by Fearn and Lamb (1991).
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Chapter 9

Calculations and measurements of single-particle
characteristics

It follows from the structure of the VRTE that the first step in solving this equation
for a specific scattering medium must be the determination of the single-particle ex-
tinction and phase matrices averaged over the relevant range of particle states. These
quantities are also necessary to describe single scattering by an individual random
particle as well as a small random particle group (Chapters 6 and 7). Given the un-
limited variability of particles in natural and anthropogenic environments, as illus-
trated by Fig. 9.0.1, the computation of ξ�� )ˆ(sK  and ξ�′� )ˆ,ˆ( qqZ  can be a rather non-
trivial problem. The case of spherically symmetric particles is an exception since it
can be handled easily using the classical Lorenz–Mie theory or one of its extensions.
However, the optical properties of nonspherical and heterogeneous particles must be
either computed using a sophisticated theory or measured experimentally, both ap-
proaches having their strengths, weaknesses, and limitations.

The aim of this chapter is to provide a brief summary of the existing theoretical and
experimental techniques for determination of the single-particle characteristics. More
detailed information and further references can be found in MTL, in the book edited by
Mishchenko et al. (2000a), and in a recent review by Kahnert (2003).

9.1 Exact theoretical techniques

Most of the existing exact theoretical approaches belong to one of two broad categories.
Differential equation methods yield the scattered field via the solution to the Maxwell
equations or the vector wave equation in the frequency or in the time domain, whereas
integral equation methods are based on the volume or surface integral counterparts of the
Maxwell equations.
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The prime example of a differential equation method is the Lorenz–Mie theory (van
de Hulst, 1957; Bohren and Huffman, 1983; MTL). The incident, internal, and scattered
fields are expanded in suitable sets of vector spherical wave functions (VSWFs). The
expansion coefficients of the incident plane wave can be computed analytically, whereas
those of the incident and scattered fields are determined by satisfying the boundary con-
ditions, Section 2.2, on the sphere surface. Owing to the orthogonality of the VSWFs,

(a) (b) (c)

(d) (e)

(f )
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Figure 9.0.1.  Examples of man-made and natural small particles.  (a) Commercial glass
spheres (after Bangs and Meza, 1995).  (b) Sahara desert sand (after Volten et al., 2001). (c)
Dried sea-salt particles (after Chamaillard et al., 2003).  (d) Fly ash particles (after Ebert et al.,
2002).  (e) Biological microparticles (after Ebert et al., 2002).  (f ) Cirrus cloud crystals (after
Arnott et al., 1994).
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each expansion coefficient of either the internal or the scattered field is determined sepa-
rately. This makes the Lorenz–Mie theory extremely efficient and numerically exact.
Several computer implementations of the Lorenz–Mie solution are available on the
World Wide Web. Section 5.10 of MTL provides a detailed user guide to the Lorenz–
Mie code posted at http://www.giss.nasa.gov/~crmim. By implementing a recursive
procedure, one can generalize the Lorenz–Mie solution and treat concentric multi-layer
spheres (e.g., Babenko et al., 2003 and references therein).

The separation of variables method (SVM) for spheroids provides the solution of
the electromagnetic scattering problem in the spheroidal coordinate system by means
of expanding the incident, internal, and scattered fields in vector spheroidal wave
functions (Oguchi, 1973; Asano and Yamamoto, 1975). The expansion coefficients of
the incident field are computed analytically, whereas the unknown expansion coeffi-
cients of the internal and scattered fields are determined by applying the boundary
conditions, Section 2.2. Because the vector spheroidal wave functions are not or-
thogonal on the spheroid surface, this procedure yields an infinite set of linear alge-
braic equations for the unknown coefficients which must be truncated and solved nu-
merically. The obvious limitation of the SVM is that it applies only to spheroidal
scatterers, whereas its main advantages are the ability to produce very accurate results
and the applicability to spheroids with extreme aspect ratios. This technique was sig-
nificantly improved by Voshchinnikov and Farafonov (1993) and was extended to
core-mantle spheroids by Onaka (1980), Cooray and Ciric (1992), and Farafonov et
al. (1996). Further references can be found in the review by Ciric and Cooray (2000)
and the book by Li et al. (2002).

The finite element method (FEM) is a differential equation technique that yields
the scattered field by means of solving numerically the vector Helmholtz equation
subject to the standard boundary conditions. The particle is imbedded in a finite com-
putational domain discretized into many cells with about 10 to 20 cells per wave-
length. The electric field values are specified at the nodes of the cells and are initially
unknown. Using the boundary conditions, the differential equation is converted into a
matrix equation for the unknown node field values. The latter is solved using the
standard Gaussian elimination or preconditioned iterative techniques such as the
conjugate gradient method.  Although scattering in the far-field zone is an open-space
problem, the FEM is always implemented in a finite computational domain in order to
limit the number of unknowns. Therefore, approximate absorbing boundary condi-
tions must be imposed at the outer boundary of the computational domain in order to
suppress wave reflections back into the domain and permit the numerical analogs of
the outward-propagating wave to exit the domain almost as if it were infinite. The
FEM can be applied to arbitrarily shaped and inhomogeneous particles and is simple in
concept and implementation. However, FEM computations are spread over the entire
computational domain rather than confined to the scatterer itself, thereby making the
technique slow and limited to size parameters less than about 10. The finite spatial dis-
cretization and the approximate absorbing boundary condition limit the accuracy of the
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method. Further information about the FEM can be found in the books by Silvester and
Ferrari (1996), Volakis et al. (1998), and Jin (2002).

Unlike the FEM, the finite difference time domain method (FDTDM) yields the
solution of the electromagnetic scattering problem in the time domain by directly
solving the Maxwell time-dependent curl equations (2.1.2) and (2.1.4) (Yee, 1966).
The space and time derivatives of the electric and magnetic fields are approximated
using a finite difference scheme with space and time discretizations selected so that
they constrain computational errors and ensure numerical stability of the algorithm.
Since the scattering object is imbedded in a finite computational domain, absorbing
boundary conditions are employed to model scattering in the open space. Modeling
scattering objects with curved boundaries using rectangular grid cells causes a stair-
casing effect and increases numerical errors, especially for particles with large rela-
tive refractive indices. Since FDTDM yields the near field in the time domain, a spe-
cial near-zone to far-zone transformation must be invoked in order to compute the
scattered far field in the frequency domain. The FDTDM shares the advantages of the
FEM as well as its limitations in terms of accuracy and size parameter range. Additional
information on the FDTDM and its applications can be found in the books by Kunz and
Luebbers (1993) and Taflove and Hagness (2000) as well as in the review by Yang and
Liou (2000).

The point-matching method (PMM) is a differential equation technique based on
expanding the incident and internal fields in VSWFs regular at the origin and ex-
panding the scattered field outside the scatterer in outgoing VSWFs. The expansion
coefficients of the incident field are computed analytically, whereas the coefficients
of the internal and scattered fields are found by truncating the expansions to a finite
size and matching the fields at the surface of the scatterer via the application of the
boundary conditions. In the simple PMM, the fields are matched at as many points on
the surface as there exist unknown expansion coefficients (Oguchi, 1973). The simple
PMM often produces poorly converging and unstable results, which may be attributed
to the fact that it relies on the so-called Rayleigh hypothesis. The convergence prob-
lem of the simple PMM appears to be partly ameliorated in the generalized PMM
(GPMM) by creating an overdetermined system of equations for the unknown coeffi-
cients by means of matching the fields in the least squares sense at a number of sur-
face points significantly greater than the number of unknowns (Morrison and Cross,
1974). The performance of the GPMM is further improved by employing multiple
spherical expansions to describe the fields both inside and outside the scattering ob-
ject. This multiple-expansion GPMM (ME-GPMM) does not rely on the Rayleigh
hypothesis and is otherwise known as the generalized multipole technique, discrete
sources method, and Yasuura method (Wriedt, 1999; Doicu et al., 2000).

As we have seen in Section 3.1, the interaction of an incident electromagnetic
wave with an object of volume INTV  is fully described by the volume integral equa-
tion (3.1.21). The calculation of the scattered field using Eq. (3.1.22) would be
straightforward except that the internal electric field is unknown. Therefore, this
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equation must first be solved for the internal field. The integral in Eq. (3.1.21) is ap-
proximated by discretizing the interior region into N cubic cells of a volume V∆  with
about 10 to 20 cells per wavelength and assuming that the electric field and the re-
fractive index within each cell are constant:
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where INTVi ∈r  is the central point of the ith cell. Equations (9.1.1) form a system of
N linear algebraic equations for the N unknown internal fields )( irE  and are solved
numerically. Once the internal fields are found, the scattered field is determined from
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This version of the volume integral equation method (VIEM) is known as the method
of moments (MOM). Since the free space dyadic Green’s function becomes singular
as ,0    || →′− rr  special techniques must be used to handle the self-interaction term

)    ( ij =  in the sum on the right-hand side of Eq. (9.1.1). The straightforward ap-
proach to solving the MOM matrix equation using the standard Gaussian elimination
is not practical for size parameters exceeding unity. The conjugate gradient method
together with the fast Fourier transform (Peterson et al., 1998) can be applied to sig-
nificantly larger size parameters and substantially reduces computer memory re-
quirements. The standard drawback of using a preconditioned iterative technique is
that computations must be fully repeated for each new illumination direction.

Another version of the VIEM is the so-called discrete dipole approximation (DDA).
Whereas the MOM deals with the actual electric fields in the central points of the cells,
the DDA exploits the concept of exciting fields and is based on partitioning the particle
into a number N of elementary polarizable units called dipoles. The electromagnetic re-
sponse of the dipoles to the local electric field is assumed to be known. The field exciting
a dipole is a superposition of the external field and the fields scattered by all other di-
poles. This allows one to write a system of N linear equations for N fields exciting the N
dipoles. The numerical solution of the DDA matrix equation is then used to compute the
N partial fields scattered by the dipoles and thus the total scattered field. Although the
original derivation of the DDA by Purcell and Pennypacker (1973) was heuristic, Lak-
htakia and Mulholland (1993) showed that the DDA can be derived from Eq. (3.1.21)
and is closely related to the MOM.

The major advantages of the MOM and the DDA are that they automatically satisfy
the radiation condition at infinity, Eq. (3.2.16), are confined to the scatterer itself, thereby
resulting in fewer unknowns than the differential equation methods, and can be applied to
inhomogeneous, anisotropic, and optically active scatterers. However, the numerical ac-
curacy of the methods is relatively low and improves slowly with increasing N, whereas
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the computer time grows rapidly with increasing size parameter. Another disadvantage of
these techniques is the need to repeat the entire calculation for each new direction of in-
cidence. Further information on the MOM and the DDA and their applications can be
found in Miller et al. (1991) and Draine (2000).

Equation (3.1.21) is a Fredholm-type integral equation with a singular kernel at
.    rr =′  Holt et al. (1978) removed the singularity by applying the Fourier transform

to the internal field and converting the volume integral into an integral in the wave
number coordinate space. Discretization of the latter integral results in a matrix equa-
tion which is solved numerically and gives the scattered field. A limitation of this
Fredholm integral equation method (FIEM) is that the matrix elements must be evalu-
ated analytically, thereby requiring different programs for each shape and restricting
computations to only a few models such as spheroids, triaxial ellipsoids, and finite
circular cylinders. The majority of reported FIEM computations pertain to size pa-
rameters smaller than five and tend to be rather time consuming (Holt, 1982).

The Lorenz–Mie theory can be extended to clusters of spheres by using the transla-
tion addition theorem for the VSWFs (Bruning and Lo, 1971a,b). The total field scattered
by a multi-sphere cluster can be expressed as a superposition of individual fields scat-
tered from each sphere. The external electric field illuminating the cluster and the indi-
vidual fields scattered by the component spheres are expanded in VSWFs with origins at
the individual sphere centers. The orthogonality of the VSWFs in the sphere boundary
conditions is exploited by applying the translation addition theorem in which a VSWF
centered at one sphere origin is re-expanded about another sphere origin.  This procedure
ultimately results in a matrix equation for the scattered-field expansion coefficients of
each sphere. Numerical solution of this equation for the specific incident wave gives the
individual scattered fields and thereby the total scattered field. Alternatively, inversion of
the cluster matrix equation gives sphere-centered transition matrices (or T matrices) that
transform the expansion coefficients of the incident wave into the expansion coefficients
of the individual scattered fields. In the far-field region, the individual scattered-field
expansions can be transformed into a single expansion centered at a single origin inside
the cluster. This procedure gives the T matrix that transforms the incident-wave expan-
sion coefficients into the single-origin expansion coefficients of the total scattered field
(Mackowski, 1994) and can be used in the analytical averaging of scattering characteris-
tics over cluster orientations (Mackowski and Mishchenko, 1996; Borghese et al., 2003).
The superposition method (SM) has been extended to spheres with one or more eccentri-
cally positioned spherical inclusions (Fuller, 1995; Videen et al., 1995; Borghese et al.,
2003) and to clusters of dielectric spheroids in an arbitrary configuration (Ciric and Coo-
ray, 2000). Because of the analyticity of its mathematical formulation, the SM is capable
of producing very accurate results. Fuller and Mackowski (2000) gave a detailed review
of the SM for compounded spheres.

The T-matrix method (TMM) is based on expanding the incident field in VSWFs
regular at the origin and expanding the scattered field outside a circumscribing sphere of
the scatterer in VSWFs regular at infinity. The T matrix transforms the expansion coeffi-
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cients of the incident field into those of the scattered field and, if known, can be used to
compute any scattering characteristic of the particle. The TMM was initially developed
by Waterman (1971) for single homogeneous objects and was generalized to multi-
layered scatterers and arbitrary clusters of nonspherical particles by Peterson and Ström
(1973, 1974). For spheres, all TMM formulas reduce to those of the Lorenz–Mie theory.
In the case of clusters composed of spherical components, the T-matrix method reduces
to the multi-sphere SM.

The T matrix for single homogeneous and multilayered scatterers is usually computed
using the extended boundary condition method (EBCM; Waterman, 1971), which ex-
plicitly avoids the use of the Rayleigh hypothesis. The EBCM can be applied to any par-
ticle shape, although computations become much simpler and more efficient for bodies
of revolution. Special procedures have been developed to improve the numerical stability
of EBCM computations for large size parameters and/or extreme aspect ratios. Recent
work has demonstrated the practical applicability of the EBCM to particles without axial
symmetry, e.g., ellipsoids, cubes, and finite polyhedral cylinders. The computation of the
T matrix for a cluster assumes that the T matrices of all components are known and is
based on the use of the translation addition theorem for the VSWFs (Peterson and Ström,
1973). The loss of efficiency for particles with large aspect ratios or with shapes lacking
axial symmetry is the main drawback of the TMM. The main advantages of the TMM
are high accuracy and speed coupled with applicability to particles with equivalent-
sphere size parameters exceeding 180. Mishchenko (1991a), Khlebtsov (1992), and
Mackowski and Mishchenko (1996) have developed analytical orientation averaging
procedures which make TMM computations for randomly oriented particles as fast as
those for a particle in a fixed orientation.

Figure 9.1.1 gives examples of particles that can be treated using various implemen-
tations of the TMM. Further information on this technique can be found in Chapter 5 of
MTL and in Kahnert (2003). A representative collection of public-domain T-matrix
codes is posted on the World Wide Web at http://www.giss.nasa.gov/~crmim.

The only methods yielding very accurate results for particles comparable to and
larger than a wavelength are the SVM, SM, and TMM. The SVM, SM, TMM, and
ME-GPMM have been used in computations for particles significantly larger than a
wavelength. The first three techniques appear to be the most efficient in application to
bodies of revolution. The analytical orientation averaging procedure makes the TMM
the most efficient technique for randomly oriented particles with moderate aspect
ratios. Particles with larger aspect ratios can be treated with the SVM, an iterative
EBCM, and the ME-GPMM. Computations for anisotropic objects and homogeneous
and inhomogeneous particles lacking rotational symmetry often have to rely on more
flexible techniques such as the FEM, FDTDM, MOM, and DDA. These techniques
are simple in concept and computer implementation and have comparable perform-
ance characteristics, although their simplicity and flexibility are often accompanied
by lower efficiency and accuracy and by stronger practical limitations on the maximal
size parameter. A comprehensive collection of computer programs based on a variety
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of exact numerical techniques is posted at http://www.iwt-bremen.de/vt/laser/wriedt/
index_ns.html.

9.2 Approximations

Any approximate theory of light scattering is based on a simplifying assumption that
substantially limits its range of applicability. For example, Rayleigh (1897) derived
an approximation for scattering in the small-particle limit (x � 1) by assuming that
the incident field inside and near the particle behaves almost as an electrostatic field
and the internal field is homogeneous. The conditions of validity of the Rayleigh–
Gans approximation (otherwise known as the Rayleigh–Debye or Born approxi-
mation) are |1| −mx  � 1 and |1| −m  � 1. Hence particles are assumed to be not too
large (although they may be larger than in the case of Rayleigh scattering) and
optically “soft”. The fundamental RGA assumption is that each small-volume element
of the scattering object is excited only by the incident field. The scattered field is then
computed from Eq. (3.2.14) after substituting ).(  )( inc rErE ′=′  The anomalous
diffraction approximation (ADA) was introduced by van de Hulst (1957) as a means
of computing the extinction cross section for large, optically soft spheres with x � 1
and |1| −m  � 1. Since the second condition means that rays are weakly deviated as
they cross the particle boundary and are negligibly reflected, the ADA assumes that ex-
tinction is caused by absorption of light passing through the particle and by the inter-
ference of light passing through and around the particle.

The practical importance of approximate theories diminishes as various exact

Spheroids

Circular cylinders

Chebyshev particles

Clusters

Polyhedral particles

Superellipsoids

Figure 9.1.1.  Types of particles that can be treated with the T-matrix method (after Wriedt,
2002 and Penttilä and Lumme, 2004).
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techniques mature and become applicable to a wider range of problems, while com-
puters become ever more powerful. However, approximate theories still remain a
valuable source of physical insight into the process of scattering and absorption by
nonspherical particles. Furthermore, it is likely that at least one approximation, the
geometrical optics method, will never become obsolete because its accuracy only
improves as the particle size parameter grows, whereas all exact theoretical tech-
niques for nonspherical particles cease to be practical when the size parameter ex-
ceeds a certain threshold.

The geometrical optics approximation (GOA) is a universal method for computing
electromagnetic scattering by arbitrarily shaped particles with sizes much larger than
the wavelength of the incident light. The GOA assumes that the incident plane wave
can be represented as a collection of independent parallel rays. The history of each
ray impinging on the particle surface is traced using Snell’s law and Fresnel’s formu-
las (see Fig. 9.2.1). Each incident ray is partially reflected and partially refracted into
the particle. The refracted ray may emerge after another refraction, possibly after one
or more internal reflections, and may be attenuated by absorption inside the particle.
Each internal ray is traced until its intensity decreases below a prescribed cutoff
value. Varying the polarization state of the incident rays, sampling all escaping rays
into predefined narrow angular bins, and adding incoherently the respective Stokes
parameters yields a quantitative representation of the particle’s scattering properties in
terms of the ray-tracing phase matrix .RTZ  Because all rays impinging on the particle
surface are either scattered or absorbed irrespective of their polarization state, the ray-
tracing extinction matrix is always diagonal and is given by .  RT

ext
RT ∆K C=  The ray-

Internally
reflected

Directly
transmitted

Transmitted
after one

internal reflection

Refracted

reflected

Incident

Absorbed

Externally

Figure 9.2.1.  Ray-tracing diagram.
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tracing extinction cross section RT
extC  does not depend on the polarization state of the

incident light and is equal to the geometrical area G of the particle projection on the
plane perpendicular to the incidence direction. Since the presence of the particle
modifies the incident plane wave front by eliminating a part that has the shape and
size of the geometrical projection of the particle, the ray-tracing scattering pattern
must be supplemented by the computation of Fraunhofer diffraction of the incident
wave on the particle projection. The diffraction component of the phase matrix DZ  is
confined to a narrow angular cone centered at the exact forward-scattering direction
and is usually computed in the Kirchhoff approximation (Jackson, 1998), thereby
contributing only to the diagonal elements of the total phase matrix. The diffraction
component DK  of the total extinction matrix  is equal to .RTK  We thus have

,      D
11

RTDRTGO ∆ZZZZ Z+=+=     (9.2.1)

,  GO
ext

DRTGO ∆KKK C=+=     (9.2.2)

where

.2    D
ext

RT
ext

GO
ext GCCC =+=     (9.2.3)

The total scattering cross section is the sum of the ray-tracing and diffraction compo-
nents:

.  D
sca

RT
sca

GO
sca CCC +=     (9.2.4)

Since the diffracted energy is not absorbed, the diffraction scattering cross section is
equal to the diffraction extinction cross section:

.    D
ext

D
sca GCC ==     (9.2.5)

The ray-tracing scattering cross section RT
scaC  is found from RTZ  and Eq. (3.9.10).

The main advantage of the GOA is that it can be applied to essentially any shape.
However, this technique is approximate by definition, and its range of applicability in
terms of the smallest size parameter must be checked by comparing GOA results with
exact numerical solutions of the Maxwell equations. It appears that although the main
geometrical optics features can be qualitatively reproduced by particles with size pa-
rameters less than 100, obtaining good quantitative accuracy in GOA computations of the
phase matrix still requires size parameters exceeding a few hundred. Even then the GOA
fails to reproduce scattering features caused by interference and diffraction effects.

To improve the GOA, Ravey and Mazeron (1982) (see also Muinonen, 1989; Liou et
al., 2000) developed the so-called physical optics or Kirchhoff approximation (KA). This
approach is based on expressing the scattered field in terms of the electric and magnetic
fields on the exterior side of the particle surface. The latter are computed approximately
using Fresnel formulas and the standard ray-tracing procedure. The KA partially pre-
serves the phase information and reproduces some physical optics effects completely
ignored by the standard GOA.
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9.3 Measurement techniques

Existing laboratory measurement techniques fall into two categories:

● Scattering of visible or infrared light by particles with sizes from several hun-
dredths of a micron to several hundred microns.

● Microwave scattering by millimeter- and centimeter-sized objects.

Measurements in the visible and infrared benefit from the availability of sensitive detec-
tors, intense sources of radiation, and high-quality optical elements. They involve
cheaper and more portable instrumentation and can be performed in the field as well as in
the laboratory. However, they become problematic when experimental data for a fixed
scattering object are needed and may be difficult to interpret because of lack of inde-
pendent information on sample microphysics and composition. Microwave scattering
experiments require more cumbersome and expensive instrumentation and large meas-
urement facilities, but allow a much greater control over the scattering object.

Many detectors of electromagnetic energy in the visible and infrared spectral re-
gions are polarization-insensitive, which means that the detector response is deter-
mined only by the first Stokes parameter of the beam impinging on the detector.
Therefore, in order to measure all elements of the scattering matrix one must use
various optical elements that can vary the polarization state of light before and after
scattering in a controllable way (see Sections 2.10 and 3.7). Figure 9.3.1 (adapted
from Hovenier, 2000) depicts the scheme of an advanced laboratory setup used to
measure scattering matrix elements for random groups of natural and artificial parti-
cles. The light beam generated by a laser passes through a linear polarizer and a po-
larization modulator and then illuminates particles contained in the scattering cham-
ber. Light scattered by the particles at an angle Θ  relative to the incidence direction
passes a quarter-wave plate and a polarization analyzer, after which its intensity is
measured by a detector. Assuming that the scattering volume satisfies the criteria of
applicability of the MUSSA (see Chapter 7), we can write for the Stokes column
vector of the beam reaching the detector, ,I′  the following expression:

I′  ∝ ,)(    )( IPMZQAIPMZQA ξΘΘ ��= N     (9.3.1)

where I  is the Stokes column vector of the beam leaving the light source, A, Q, M,
and P are 44×  Mueller transformation matrices of the analyzer, quarter-wave plate,
modulator, and polarizer, respectively, )(ΘZ  is the total phase matrix of the particles
contributing to the scattered beam, N is the number of the particles, and ξΘ �� )(Z  is
the ensemble-averaged phase matrix per particle. It is assumed that the plane through
the incidence and scattering directions serves as the azimuthal plane for defining the
Stokes parameters. The Mueller matrices of the polarizer, modulator, quarter-wave
plate, and analyzer depend on their orientation with respect to the scattering plane and
can be precisely varied. Because the detector measures only the first element of the
Stokes column vector ,I′  several measurements with different orientations of the opti-
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cal components with respect to the scattering plane are required for the full determi-
nation of the phase matrix. This procedure is repeated at different scattering angles in
order to determine the angular profile of the phase matrix.

Hunt and Huffman (1973) developed the technique of a high-frequency sinusoidal
modulation in time of the polarization of light before scattering (Fig. 9.3.1) combined
with intensity normalization. Followed by lock-in detection, this technique increases the
experimental accuracy by enabling direct measurements of the phase matrix elements
normalized by the (1, 1) element and yields the capability to determine several elements
from only one detected signal.

In accordance with the scale invariance rule (Section 3.5), the main idea of the
microwave analog technique is to manufacture a centimeter-sized scattering object
with desired shape and refractive index, measure the scattering of a microwave beam
by this object, and finally extrapolate the result to other wavelengths (e.g., visible or
infrared) by keeping the ratio size/wavelength fixed. In a modern microwave scatter-
ing setup (see Fig. 9.3.2), radiation from a transmitting conical horn antenna passes
through a collimating lens and a polarizer. The lens produces a nearly flat wave front
which is scattered by an analog particle model target. The scattered wave passes
through another polarizer and lens and is measured by a receiving horn antenna. The
receiver end of the setup can be positioned at any scattering angle from °0  to maxΘ �
170°, thereby providing measurements of the angular distribution of the scattered
radiation. By varying the orientations of the two polarizers, one can measure all ele-
ments of the phase matrix.

Figure 9.3.1.  Schematic view of an experimental scattering setup using visible or infrared
light.



Calculations and measurements of single-particle characteristics 239

9.4 Further reading

In addition to MTL, the collective monograph edited by Mishchenko et al. (2000a),
and the recent review by Kahnert (2003), a plentiful source of information on elec-
tromagnetic scattering by nonspherical particles is the collection of special issues of
the Journal of Quantitative Spectroscopy and Radiative Transfer edited by Hovenier
(1996), Lumme (1998), Mishchenko et al. (1999a), Videen et al. (2001), Kolokolova
et al. (2003), and Wriedt (2004). The book by Babenko et al. (2003) gives a detailed
account of electromagnetic scattering by radially inhomogeneous and anisotropic
spherical particles. A useful compendium of approximate formulas was provided by
Kokhanovsky (2004).

Figure 9.3.2.  Layout of a modern microwave analog facility. (After Gustafson, 2000.)
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Chapter 10

Radiative transfer in plane-parallel scattering media

In order to use the radiative transfer theory in analyses of laboratory measurements or
remote-sensing observations, one needs efficient theoretical techniques for solving the
VRTE in either the integral or the integro-differential form. Unfortunately, like many
other integral and integro-differential equations, the VRTE is very difficult to solve
analytically or numerically. In order to facilitate the solution, we will have to make
several simplifying assumptions. The most important of them, which will be used
throughout the remainder of the book, are the assumptions that the scattering medium:

● Is plane parallel.
● Has an infinite horizontal extent.
● Is illuminated from above by a plane electromagnetic wave or a parallel

quasi-monochromatic beam of light of infinite lateral extent.

These assumptions mean that all properties of the medium and of the radiation field
may vary only in the vertical direction and are independent of the horizontal coordi-
nates. Taken together, these assumptions specify the so-called standard problem of
atmospheric optics and provide a model relevant to a great variety of applications in
diverse fields of science and technology. In this chapter we will not make any further
assumptions and will derive several important equations describing the internal dif-
fuse radiation field as well as the diffuse radiation exiting the medium.

10.1 The standard problem

Let us consider a plane-parallel layer extending in the vertical direction from bzz =
to ,tzz =  where the z-axis of the laboratory right-handed coordinate system is per-
pendicular to the boundaries of the medium and is directed upwards, and “b” and “t”
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stand for “bottom” and “top”, respectively (Fig. 10.1.1). A propagation direction n̂  at
a point in space will be specified by a couplet },,{ ϕu  where ]1 ,1[cos +−∈−= θu
is the direction cosine, and θ  and ϕ  are the corresponding polar and azimuth angles
with respect to the local coordinate system having the same spatial orientation as the
laboratory coordinate system. It is also convenient to introduce a nonnegative quantity

].1 ,0[|| ∈= uµ  In order to make many formulas of this and the following chapters
more compact, we will denote by µ̂  the pair of arguments },{ ϕµ  and by µ̂−  the
pair of arguments } ,{ ϕµ−  (note that µ̂  and µ̂−  are not unit vectors). A µ̂  always
corresponds to a downward direction and a µ̂−  always corresponds to an upward
direction. We also denote

.ddˆd
2  

0  

1  

0  
ϕµµ

π

=     (10.1.1)

Let us assume that the scattering layer is illuminated from above by a plane elec-

n̂θ

O
y

x

z

0n̂

tz

bz
ϕ

Figure 10.1.1.  Plane-parallel scattering medium illuminated from above by a parallel quasi-
monochromatic beam of light.
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tromagnetic wave or a parallel quasi-monochromatic beam of light propagating in the
direction }. ,{ˆ 000 ϕµ=n  The uniformity and the infinite transverse extent of the
wave or the beam ensure that all parameters of the internal radiation field and those of
the radiation leaving the scattering layer are independent of the coordinates x and y.
Therefore, Eq. (8.11.5) can be rewritten in the form

)ˆ ,(~)ˆ ,ˆ ,( ˆd)()ˆ ,(~)ˆ ,()(
d

)ˆ ,(~d  

4  
00 nnnnnnn ′′′+−=− zzznzzzn

z
zu IZIKI

π

           (10.1.2)

and must be supplemented by the boundary conditions

,)(δ)(δ)ˆ ,(~
000t II ϕϕµµµ −−=z     (10.1.3)

,)ˆ ,(~
b 0I =−µz     (10.1.4)

where

)ˆ ,(~)()ˆˆ(δ)ˆ ,(~
d c0 nnnn zzz III +−=

is the full specific intensity column vector including both the coherent and the diffuse
components, K and Z are the extinction and the phase matrix, respectively, averaged
over particle states (note that we have omitted the angular brackets for the sake of
brevity), 0I  is the Stokes column vector of the incident radiation, and 0 is a zero four-
element column. As in Chapter 8, the tilde distinguishes specific intensity column
vectors from Stokes column vectors. The boundary conditions follow directly from
the integral form of the VRTE, Eq. (8.10.9), and mean that the downwelling radiation
at the upper boundary of the layer consists only of the incident radiation and that there
is no upwelling radiation at the lower boundary. Equations (10.1.2)–(10.1.4) collec-
tively represent what we have called the standard problem.

Since )(0 zn  is a common factor in both terms on the right-hand side of Eq.
(10.1.2), it is convenient to eliminate it by introducing a new vertical “coordinate”

)(zψ  according to zzn d)(d 0−=ψ  or

).(d)( 0

  

  
znzz

z
′′=

∞

ψ     (10.1.5)

Clearly, )(zψ  has the dimension 2m−  and is the number of particles in a vertical col-
umn having a unit cross section and extending from zz =′  to infinity. It is, therefore,
natural to call it the “particle depth”. Unlike the z-coordinate, which increases in the
upward direction, the coordinate-ψ increases in the downward direction. We then
have

),ˆ ,(~)ˆ ,ˆ ,(ˆd)ˆ ,(~)ˆ ,( 
d

)ˆ ,(~d  

4  
nnnnnnn ′′′+−= ψψψψ

ψ
ψ

π
IZIKIu     (10.1.6)

,)(δ)(δ)ˆ ,0(~
000 II ϕϕµµµ −−=     (10.1.7)



Radiative transfer in plane-parallel scattering media 243

,)ˆ ,(~ 0I =−µΨ     (10.1.8)

where )( bzψΨ =  is the “particle thickness” of the layer (Fig. 10.1.2).

10.2 The propagator

Before attempting to solve the full VRTE, let us first consider the solution of the ho-
mogenous differential transfer equation

0        ),ˆ ,(~)ˆ ,( 
d

)ˆ ,(~d ψψµψµψ
ψ

µψµ ≥−= IKI     (10.2.1)

supplemented by the initial condition

.~)ˆ ,(~
0 0 II =µψ     (10.2.2)

It is convenient to express )ˆ,( µψI  in terms of the solution of the following auxiliary
initial-value problem:

,        ),ˆ , ,()ˆ ,( 
d

)ˆ , ,(d
00

0 ψψµψψµψ
ψ

µψψµ ≥−= XKX     (10.2.3)

,)ˆ , ,( 00 ∆X =µψψ     (10.2.4)

ψ

0=ψ

Ψψ =

)ˆ ,0(
~ µ−I

0I

) ,(
~

ψ −I

) ,(
~ ψI

) ,(
~

ΨI

µ̂

µ̂

µ̂

Figure 10.1.2.  The standard problem.
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where, as before, ∆  is the 44×  unit matrix and )ˆ,,( 0 µψψX  is a 44×  real matrix
called the matrizant (Frazer et al., 1957; Birkhoff and Rota, 1969), the evolution op-
erator (Landi Degl’Innocenti and Landolfi, 2004), or the propagator (Flatau and Ste-
phens, 1988). Specifically, if the propagator is known then the solution of Eqs.
(10.2.1)– (10.2.2) is simply

.~)ˆ , ,()ˆ ,(~
0 0 IXI µψψµψ =     (10.2.5)

The propagator has the obvious semi-group property

),ˆ ,,()ˆ ,,()ˆ , ,( 0110 µψψµψψµψψ XXX =     (10.2.6)

where .10 ψψψ ≤≤  Indeed, since the matrix )ˆ , ,()ˆ,,( 10 µψψµψψ XY =
)ˆ , ,( 01 µψψX×  is the solution of the same differential matrix equation (10.2.3) with

the same initial condition ,)ˆ,,( 00 ∆Y =µψψ  the property (10.2.6) follows from the
well-known mathematical fact that the differential equation (10.2.3) has only one so-
lution satisfying the initial condition (10.2.4).

If the scattering layer is homogeneous then ),ˆ()ˆ,( µµψ KK ≡  and the propagator
can be written in the form of a matrix exponential:

].)ˆ()(exp[)ˆ , ,( 00 µµψψµψψ KX −−=     (10.2.7)

If the layer is inhomogeneous, one should exploit the semi-group property (10.2.6) by
subdividing the interval ],[ 0 ψψ  into a number N of equal subintervals ], ,[ 10 ψψ  …,

], ,[ 1 nn ψψ −  …, ] ,[ 1 ψψ −N  and calculating the propagator in the limit →N ∞:

�)]ˆ ,2∆()∆( {exp[lim)ˆ , ,( 10 µψψµψµψψ +−= −
∞→

N
N

KX

    �)]ˆ ,2∆()∆( exp[ 1 µψψµψ +−× −nK

    )]}ˆ ,2∆()∆( exp[ 0 µψψµψ +−× K

 �)]ˆ ,2∆()∆({[lim 1 µψψµψ +−= −
∞→

N
N

K∆

    �)]ˆ ,2∆()∆([ 1 µψψµψ +−× −nK∆

    )]},ˆ ,2∆()∆([ 0 µψψµψ +−× K∆     (10.2.8)

where N)(∆ 0ψψψ −=  and .∆0 ψψψ nn +=
Similarly, the solution of the equation

0        ),ˆ ,(~)ˆ ,( 
d

)ˆ ,(~d ψψµψµψ
ψ

µψµ ≤−−−=−− IKI     (10.2.9)

supplemented by the initial condition

0 0
~)ˆ ,(~ II =−µψ             (10.2.10)

can be expressed in terms of the solution of the auxiliary initial-value problem

,        ),ˆ , ,()ˆ ,( 
d

)ˆ , ,(d
00

0 ψψµψψµψ
ψ

µψψµ ≤−−−=−− XKX        (10.2.11)
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∆X =− )ˆ , ,( 00 µψψ         (10.2.12)

as

.~)ˆ , ,()ˆ ,(~
0 0 IXI µψψµψ −=−         (10.2.13)

The propagator )ˆ , ,( 0 µψψ −X  has the semi-group property

010110         ),ˆ ,,()ˆ ,,()ˆ , ,( ψψψµψψµψψµψψ ≤≤−−=− XXX      (10.2.14)

and is given by

])ˆ()(exp[)ˆ , ,( 00 µµψψµψψ −−−=− KX         (10.2.15)

if the layer is homogeneous and by

�)]ˆ ,2∆()∆( {exp[lim)ˆ , ,( 10 µψψµψµψψ −−−=− −
∞→

N
N

KX

      �)]ˆ ,2∆()∆( exp[ 1 µψψµψ −−−× −nK

      )]}ˆ ,2∆()∆( exp[ 0 µψψµψ −−−× K

   �)]ˆ ,2∆()∆({[lim 1 µψψµψ −−−= −
∞→

N
N

K∆

      �)]ˆ ,2∆()∆([ 1 µψψµψ −−−× −nK∆

      )]}ˆ ,2∆()∆([ 0 µψψµψ −−−× K∆   (10.2.16)

if the layer is inhomogeneous, where N)(∆ 0 ψψψ −=  and .∆0 ψψψ nn −=

10.3 The general problem

The standard problem (10.1.6)–(10.1.8) implies that the scattering layer is illuminated
only from above by a monodirectional source of light. It is useful, however, to con-
sider the following more general boundary values, which include the boundary condi-
tions (10.1.7) and (10.1.8) as a particular case:

),ˆ(~)ˆ ,0(~
  µµ ↓= II     (10.3.1)

),ˆ(~)ˆ ,(~
  µµΨ −=− ↑II     (10.3.2)

where )ˆ(~
  µ↓I  and )ˆ(~

  µ−↑I  are arbitrary (Fig. 10.3.1). We will call Eqs. (10.1.6),
(10.3.1), and (10.3.2) the general problem.

Let us now assume that the incident light is quasi-monochromatic, meaning that
the specific intensity column vectors )ˆ(~

  µ↓I  and )ˆ(~
  µ−↑I  represent “bundles” of un-

correlated quasi-monochromatic beams with intensity and polarization state poten-
tially varying with direction of incidence. The results of Section 8.15 allow us to ex-
press the radiation field )ˆ ,(~ nψI  for ] ,0[ Ψψ ∈  in terms of the )ˆ(~

  µ↓I  and )ˆ(~
  µ−↑I

as follows:
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)ˆ(~)ˆ ,ˆ ,(ˆd1)ˆ(~)ˆ 0 ()ˆ ,(~
    µµµψµµ

π
µµψµψ ′′′′+= ↓↓ IDIXI ,,

     ),ˆ(~)ˆ ,ˆ ,(ˆd1
  

† µµµψµµ
π

′−′′′+ ↑IU     (10.3.3)

)ˆ(~)ˆ ,ˆ ,(ˆd1)ˆ(~)ˆ    ()ˆ ,(~
    µµµψµµ

π
µµΨψµψ ′′′′+−−=− ↓↑ IUIXI ,,

  ),ˆ(~)ˆ ,ˆ ,(ˆd1
  

† µµµψµµ
π

′−′′′+ ↑ID           (10.3.4)

where the 44×  matrices U and D describe the response of the scattering layer to the
radiation incident on the upper boundary from above, while the 44×  matrices †U
and †D  describe the response to the radiation illuminating the bottom boundary of the
layer from below. The first terms on the right-hand side of Eqs. (10.3.3) and (10.3.4)
describe the direct (coherent) propagation of the incident light, whereas the remaining
terms describe the result of multiple scattering. The corresponding reflection and
transmission matrices determine the Stokes parameters of the radiation exiting the
layer and are defined as

),ˆ ,ˆ ,0()ˆ ,ˆ( µµµµ ′=′ UR     (10.3.5)

),ˆ ,ˆ ,()ˆ ,ˆ( µµΨµµ ′=′ DT     (10.3.6)

),ˆ ,ˆ ,()ˆ ,ˆ( †† µµΨµµ ′=′ UR     (10.3.7)

).ˆ ,ˆ ,0()ˆ ,ˆ( †† µµµµ ′=′ DT     (10.3.8)
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Figure 10.3.1.  The general problem.
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The matrices R and T describe the response of the layer to the external radiation fal-
ling from above, whereas the matrices †R  and †T  describe the response to the exter-
nal radiation falling from below.

It is easy to verify that the solution of the standard problem can now be expressed
as

,)ˆ ,ˆ ,(1)ˆ 0 ()(δ)(δ)ˆ ,(~
0000000 IDIXI µµψµ

π
µψϕϕµµµψ +−−= ,,   (10.3.9)

,)ˆ ,ˆ ,(1)ˆ ,(~
000 IUI µµψµ

π
µψ =−               (10.3.10)

,)ˆ ,ˆ(1)ˆ 0 ()(δ)(δ)ˆ ,(~
0000000 ITIXI µµµ

π
µΨϕϕµµµΨ +−−= ,,      (10.3.11)

.)ˆ ,ˆ(1)ˆ ,0(~
000 IRI µµµ

π
µ =−               (10.3.12)

10.4 Adding equations

In this section we will describe an elegant mathematical scheme for computing the
matrices U, D, ,†U ,†D R, T, ,†R  and †T  for an arbitrary scattering slab based on so-
called adding equations. Let us divide the slab ],0[ Ψ  into layers ],0[ ψ  and ] ,[ Ψψ
(Fig. 10.4.1). Applying Eqs. (10.3.3)–(10.3.8) to the two component layers and to the
combined slab yields

),ˆ ,ˆ ,()ˆ ,ˆ(ˆd1)ˆ 0 ()ˆ ,ˆ()ˆ ,ˆ ,( 22 µµψµµµµ
π

µψµµµµψ ′′′′′′′′′+′′=′ DRXRU ,,

 (10.4.1)

),ˆ ,ˆ ,()ˆ ,ˆ(ˆd1)ˆ ,ˆ()ˆ ,ˆ ,( †
11 µµψµµµµ

π
µµµµψ ′′′′′′′′′+′=′ URTD     (10.4.2)

)ˆ , ,()ˆ ,ˆ()ˆ ,ˆ ,( †
1

† µΨψµµµµψ ′−′=′ XRU

 ),ˆ ,ˆ ,()ˆ ,ˆ(ˆd1 ††
1 µµψµµµµ

π
′′′′′′′′′+ DR     (10.4.3)

),ˆ ,ˆ ,()ˆ ,ˆ(ˆd1)ˆ ,ˆ()ˆ ,ˆ ,( †
2

†
2

† µµψµµµµ
π

µµµµψ ′′′′′′′′′+′=′ URTD    (10.4.4)

where the subscripts 1 and 2 denote the reflection and transmission matrices of iso-
lated layers 1 and 2, respectively. Indeed, we can apply Eqs. (10.3.3), (10.3.6), and
(10.3.7) to layer 1 and write

)ˆ(~)ˆ ,ˆ(ˆd1)ˆ(~)ˆ ,0 ,()ˆ ,(~
  1  µµµµµ

π
µµψµψ ′′′′+= ↓↓ ITIXI

      )ˆ  ,(~)ˆ ,ˆ(ˆd1 †
1 µψµµµµ

π
′−′′′+ IR
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)ˆ(~)ˆ ,ˆ(ˆd1)ˆ(~)ˆ ,0 ,(   1  µµµµµ
π

µµψ ′′′′+= ↓↓ ITIX

     �
�

�
′−′−′′′+ ↑ )ˆ(~)ˆ, ,()ˆ ,ˆ(ˆd1

  
†
1 µµΨψµµµµ

π
IXR

          )ˆ(~)ˆ ,ˆ ,(ˆd1
  µµµψµµ

π
′′′′′′′′′+ ↓IU

         ,)ˆ(~)ˆ ,ˆ ,(ˆd1
  

†
�
�

�′′−′′′′′′′+ ↑ µµµψµµ
π

ID

        (10.4.5)

which, after comparison with Eq. (10.3.3), gives Eqs. (10.4.2) and (10.4.3). Similarly,
Eqs. (10.4.1) and (10.4.4) follow from

)ˆ(~)ˆ ,ˆ(ˆd1)ˆ(~)ˆ , ,()ˆ ,(~
  

†
2  µµµµµ

π
µµΨψµψ ′−′′′+−−=− ↑↑ ITIXI

  )ˆ ,(~)ˆ ,ˆ(ˆd1
2 µψµµµµ

π
′′′′+ IR

)ˆ(~)ˆ ,ˆ(ˆd1)ˆ(~)ˆ , ,(   
†
2  µµµµµ

π
µµΨψ ′−′′′+−−= ↑↑ ITIX

   �
�

�
′′′′′+ ↓ )ˆ(~)ˆ 0, ,()ˆ ,ˆ(ˆd1

  2 µµψµµµµ
π

IXR

Layer 1

Layer 2

)ˆ,0(
~ µ−I

) (
~
I µ̂

↓ 

ψ

0=ψ

Ψψ =

↑ ) (
~

−I µ̂

) ,(
~

ΨI µ̂

),(
~

ψ −I µ̂

) ,(
~ ψI µ̂

Figure 10.4.1.  Illustration of the adding principle.
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)ˆ(~)ˆ ,ˆ ,(ˆd1
  µµµψµµ

π
′′′′′′′′′+ ↓ID

�
�

�′′−′′′′′′′+ ↑ )ˆ(~)ˆ ,ˆ ,(ˆd1
  

† µµµψµµ
π

IU

 (10.4.6)
and Eq. (10.3.4). By analogy, one can derive

)ˆ ,ˆ ,()ˆ , ,0()ˆ ,ˆ()ˆ ,ˆ( 1 µµψµψµµµµ ′−+′=′ UXRR

 ),ˆ ,ˆ ,()ˆ ,ˆ(ˆd1 †
1 µµψµµµµ

π
′′′′′′′′′+ UT     (10.4.7)

)ˆ ,ˆ ,()ˆ , ,()ˆ ,0 ,()ˆ ,ˆ()ˆ ,ˆ( 2 µµψµψΨµψµµµµ ′+′′=′ DXXTT

 ),ˆ ,ˆ ,()ˆ ,ˆ(ˆd1
2 µµψµµµµ

π
′′′′′′′′′+ DT     (10.4.8)

)ˆ ,ˆ ,()ˆ , ,()ˆ ,ˆ()ˆ ,ˆ( ††
2

† µµψµψΨµµµµ ′+′=′ UXRR

  ),ˆ ,ˆ ,()ˆ ,ˆ(ˆd1 †
2 µµψµµµµ

π
′′′′′′′′′+ UT     (10.4.9)

)ˆ ,ˆ ,()ˆ , ,0()ˆ , ,()ˆ ,ˆ()ˆ ,ˆ( ††
1

† µµψµψµΨψµµµµ ′−+′−′=′ DXXTT

  ).ˆ ,ˆ ,()ˆ ,ˆ(ˆd1 ††
1 µµψµµµµ

π
′′′′′′′′′+ DT         (10.4.10)

The interpretation of Eqs. (10.4.1)–(10.4.4) and (10.4.7)–(10.4.10) is rather trans-
parent. For example, Eq. (10.4.1) indicates that the upwelling radiation at the inter-
face between layers 1 and 2 in response to the beam incident on the combined slab
from above is simply the result of reflection of the corresponding downwelling radia-
tion by layer 2. This downwelling radiation consists of:

● The attenuated direct component represented by the propagator )ˆ ,0 ,( µψ ′X
(scattering path 1 in Fig. 10.4.2).

● The diffuse component represented by the matrix )ˆ,ˆ,( µµψ ′′′D  (scattering
path 2 in Fig. 10.4.2).

Similarly, Eq. (10.4.7) shows that the reflected radiation in response to the beam il-
luminating the combined slab from above consists of three components:

● The scattering paths that never reach the interface between layers 1 and 2 (the
first term on the right-hand side of Eq. (10.4.7) and scattering path 1 in Fig.
10.4.3).

● The scattering paths “reflected” by layer 2 and “transmitted” by layer 1 with-
out scattering (the second term on the right-hand side of Eq. (10.4.7) and
scattering path 2 in Fig. 10.4.3).

● The scattering paths “reflected” by layer 2 and “diffusely transmitted” by
layer 1 (the third term on the right-hand side of Eq. (10.4.7) and scattering
path 3 in Fig. 10.4.3).
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The reader may find it a useful exercise to give similar graphical interpretations of
Eqs. (10.4.2)–(10.4.4) and (10.4.8)–(10.4.10).

Equations (10.4.1)–(10.4.4) and (10.4.7)–(10.4.10) are called adding equations
because they allow one to compute the scattering properties of the combined slab
provided that the scattering properties of each component layer are known. Indeed, if
the matrices ,1R ,1T ,†

1R  and †
1T  for layer 1 in isolation from layer 2 and the matrices

,2R ,2T ,†
2R  and †

2T  for layer 2 in isolation from layer 1 are known then one can

ψ

0

Ψ

Layer 1

Layer 2

12

Figure 10.4.2.  Physical interpretation of Eq. (10.4.1).

ψ

0

Ψ

Layer 1

Layer 2

123

Figure 10.4.3.  Physical interpretation of Eq. (10.4.7).
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solve Eqs. (10.4.1)–(10.4.4) and find the matrices ,U ,D ,†U  and †D  describing the
radiation field at the interface between the layers in the combined slab. A numerical
implementation of this procedure can involve replacing the angular integrals by ap-
propriate quadrature sums (Appendix D). For example, Eq. (10.4.1) becomes

) , ;0 ,() , ; ,() , ; , ;( 2 lklkjilkji ϕµψϕµϕµϕµϕµψ XRU =

  ) , ; ,(1
2

11

nmjimnm

N

n

N

m

uw ϕµϕµµ
π

ϕµ

R
==

+

     ), , ; , ;( lknm ϕµϕµψD×

where ) ..., ,1(    and  µµ Niwii =  are quadrature division points and weights on the
interval ],1 ,0[  and iϕ  and iu  ) ..., ,1( ϕNi =  are quadrature division points and
weights on the interval ].2 ,0[ π  The resulting system of linear algebraic equations for
the unknown values of the matrices ,U ,D ,†U  and †D  at the quadrature division
points can be solved using one of the many available numerical techniques. After the
matrices ,U ,D ,†U  and †D  at the quadrature division points have been found, the
reflection and transmission matrices of the combined slab can be calculated using the
discretized version of Eqs. (10.4.7)–(10.4.10). Adding two identical layers is tradi-
tionally called the doubling procedure.

Furthermore, let us assume that the matrices ,1U ,1D ,†
1U  and †

1D  for a level inside
layer 1 are known, where the subscript 1 indicates that these matrices pertain to layer
1 taken in isolation from layer 2. Then the matrices ,U ,D ,†U  and †D  for the same
level in the combined slab can also be easily calculated. Indeed, applying Eqs.
(10.3.3) and (10.3.4) to each component layer and to the combined slab, we derive

)ˆ ,ˆ ,()ˆ , ,()ˆ ,ˆ ,()ˆ ,ˆ ,( 1 µµψµψψµµψµµψ ′−′+′′=′′ UXUU

),ˆ ,ˆ ,()ˆ ,ˆ ,(ˆd1 †
1 µµψµµψµµ

π
′′′′′′′′′′+ UD         (10.4.11)

),ˆ ,ˆ ,()ˆ ,ˆ ,(ˆd1)ˆ ,ˆ ,()ˆ ,ˆ ,( †
11 µµψµµψµµ

π
µµψµµψ ′′′′′′′′′′+′′=′′ UUDD

  (10.4.12)

)ˆ , ,()ˆ ,ˆ ,()ˆ ,ˆ ,( †
1

† µΨψµµψµµψ ′−′′=′′ XUU

  ),ˆ ,ˆ ,()ˆ ,ˆ ,(ˆd1 ††
1 µµψµµψµµ

π
′′′′′′′′′′+ DU         (10.4.13)

)ˆ ,ˆ ,()ˆ , ,()ˆ , ,()ˆ ,ˆ ,()ˆ ,ˆ ,( ††
1

† µµψµψψµΨψµµψµµψ ′−′+′−′′=′′ DXXDD

  )ˆ ,ˆ ,()ˆ ,ˆ ,(ˆd1 ††
1 µµψµµψµµ

π
′′′′′′′′′′+ DD         (10.4.14)

for ] ,0[ ψψ ∈′  (Fig. 10.4.4(a)). Similarly, if we know the matrices ,2U ,2D ,†
2U  and

†
2D   for a level inside layer 2 taken in isolation from layer 1 then
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)ˆ ,0 ,()ˆ ,ˆ ,()ˆ ,ˆ ,( 2 µψµµψψµµψ ′′−′=′′ XUU

),ˆ ,ˆ ,()ˆ ,ˆ ,(ˆd1
2 µµψµµψψµµ

π
′′′′′−′′′′′+ DU         (10.4.15)

)ˆ ,ˆ ,()ˆ , ,()ˆ 0, ,()ˆ ,ˆ ,()ˆ ,ˆ ,( 2 µµψµψψµψµµψψµµψ ′′+′′−′=′′ DXXDD

 ),ˆ ,ˆ ,()ˆ ,ˆ ,(ˆd1
2 µµψµµψψµµ

π
′′′′′−′′′′′+ DD         (10.4.16)

)ˆ ,ˆ ,()ˆ , ,()ˆ ,ˆ ,()ˆ ,ˆ ,( ††
2

† µµψµψψµµψψµµψ ′′+′−′=′′ UXUU

  ),ˆ ,ˆ ,()ˆ ,ˆ ,(ˆd1 †
2 µµψµµψψµµ

π
′′′′′−′′′′′+ UD      (10.4.17)

)ˆ ,ˆ ,()ˆ ,ˆ ,( †
2

† µµψψµµψ ′−′=′′ DD

  )ˆ ,ˆ ,()ˆ ,ˆ ,(ˆd1 †
2 µµψµµψψµµ

π
′′′′′−′′′′′+ UU       (10.4.18)

for ],[ Ψψψ ∈′  (Fig. 10.4.4(b)).
The physical meaning of these formulas is rather transparent. For example, the

first term on the right-hand side of Eq. (10.4.11) represents the contribution of scat-
tering paths that never reach the interface between layers 1 and 2, as shown schemati-
cally by scattering path 1 in Fig. 10.4.5. The second term describes the contribution of
the scattering paths that cross the interface at least once, exit layer 2 in the direction

,µ̂  and reach the level ψ ′  without scattering, as illustrated by scattering path 2 in
Fig. 10.4.5. The last term gives the contribution of the scattering paths that cross the

0

Ψ

ψ

Layer 1

Layer 2

ψ ′

0

Ψ

ψ

Layer 1

Layer 2 
ψ ′

(a)

),(
~

ψ −I µ̂′

),(
~

ψ −I µ̂′

),(
~

ψI µ̂′

),(
~

ψI µ̂′

(b)

Figure 10.4.4.  Internal radiation field.
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interface at least once and are “scattered” at least once inside layer 1 before they
reach the level ψ ′  (scattering path 3 in Fig. 10.4.5).

A practical implementation of the adding method can involve the following three
basic steps:

● A vertically inhomogeneous slab of particle thickness Ψ  is approximated by
a stack of N partial homogeneous layers having particle thicknesses ...,,1Ψ

NΨ  such that

n

N

n

ΨΨ
1=

=

(Fig. 10.4.6). The number of partial layers and their particle thicknesses can
depend on the degree of vertical inhomogeneity of the original slab as well as
on the desired numerical accuracy of computations.

● The reflection and transmission matrices ,nR ,nT ,†
nR  and †

nT  of partial layer
n in isolation from all other layers are computed by using the doubling
method (Fig. 10.4.7). The doubling process can be started with a layer having
a particle thickness nk

nn 2∆ ΨΨ =  small enough that the reflection and
transmission matrices for this layer can be computed by considering only the
first order of scattering. Specifically, choosing the number of doubling events

nk  sufficiently large that all elements of the matrices nn ZΨ∆  and nnKΨ∆
are much smaller than unity, using Eqs. (10.1.6), (10.2.7), (10.2.15), and

0

Ψ

ψ

Layer 1

Layer 2

ψ ′

123

Figure 10.4.5.  Physical interpretation of Eq. (10.4.11).
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(10.3.1)–(10.3.8), and neglecting all terms proportional to m
n)(∆Ψ  with

,1>m  we derive

),ˆ(∆)ˆ ,0 ,∆( µ
µ
ΨµΨ n

n
nn K∆X −=         (10.4.19)

),ˆ(∆)ˆ ,∆,0( µ
µ
ΨµΨ −−=− n

n
nn K∆X         (10.4.20)

),ˆ ,ˆ(∆)ˆ ,ˆ(∆ µµ
µµ
ΨπµµΨ ′−

′
=′ n

n
n

ZR         (10.4.21)

),ˆ ,ˆ(∆)ˆ ,ˆ(∆ µµ
µµ
ΨπµµΨ ′

′
=′ n

n
n

ZT         (10.4.22)

),ˆ ,ˆ(∆)ˆ ,ˆ(†
∆ µµ

µµ
ΨπµµΨ ′−

′
=′ n

n
n

ZR         (10.4.23)

).ˆ ,ˆ(∆)ˆ ,ˆ(†
∆ µµ

µµ
ΨπµµΨ ′−−

′
=′ n

n
n

ZT         (10.4.24)

Obviously, the doubling procedure will also yield the matrices ,nU ,nD ,†
nU

and †
nD  at 12 −nk  equidistant levels inside the nth partial layer (Fig. 10.4.7).

● The N partial homogeneous layers are recursively added starting from layer 1
and moving down or starting from layer N and moving up. This process gives
the reflection and transmission matrices of the combined slab and the matri-
ces ,U  ,D  ,†U  and  †D  at the 1−N  interfaces between the partial layers as
well as at the )12(1Σ −=

nkN
n  levels inside the partial layers rendered by the

doubling procedure.

NΨ

1Ψ

2Ψ

3Ψ

nΨ

Ψ

..
.

..
.

..
.

..
.

Figure 10.4.6.  Representation of a vertically inhomogeneous scattering slab by a stack of N
homogeneous layers.
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10.5 Invariant imbedding equations

Adding computations can become inefficient if the specific vertical structure of the
scattering slab necessitates partitioning the slab into a very large number N of homo-
geneous layers in order to ensure the requisite numerical accuracy. In such cases one
may prefer to resort to solving numerically differential so-called invariant imbedding
equations for the reflection and transmission matrices as functions of the particle
thickness of the slab .Ψ

To derive the invariant imbedding equations, let us assume that ψ  in Fig. 10.4.1
is so small that all terms proportional to mψ  with 1>m  can be neglected. We then
have

),ˆ ,0()ˆ ,0 ,( µ
µ
ψµψ K∆X −=              (10.5.1)

),ˆ ,0()ˆ , ,0( µ
µ
ψµψ −−=− K∆X               (10.5.2)

),ˆ ,ˆ ,0()ˆ ,ˆ(1 µµ
µµ
ψπµµ ′−

′
=′ ZR           (10.5.3)

),ˆ ,ˆ ,0()ˆ ,ˆ(1 µµ
µµ
ψπµµ ′

′
=′ ZT           (10.5.4)

nΨ

nΨ2

n
kn ΨΨ 2=

nΨ4

∇

∇

∇

∇

..
.

..
.

..
.

n

Figure 10.4.7.  The doubling procedure.
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),ˆ ,ˆ ,0()ˆ ,ˆ(†
1 µµ

µµ
ψπµµ ′−

′
=′ ZR           (10.5.5)

)ˆ ,ˆ ,0()ˆ ,ˆ(†
1 µµ

µµ
ψπµµ ′−−

′
=′ ZT           (10.5.6)

(cf. Eqs. (10.4.19)–(10.4.24)). Substituting these formulas in Eqs. (10.4.1)–(10.4.4),
we obtain in the limit 0→ψ

)ˆ ,0()ˆ ,ˆ()ˆ ,ˆ()ˆ ,ˆ ,( 2 µµµ
µ
ψµµµµψ ′′

′
−′=′ KRRU

)ˆ ,ˆ ,0()ˆ ,ˆ(ˆd µµµµµ
µ
ψ ′′′′′′′

′
+ ZR

),ˆ ,ˆ()ˆ ,ˆ ,0()ˆ ,ˆ(ˆdˆd µµµµµµµµ
π
ψ ′′′′′′′−′′′′′′′′′+ RZR

    (10.5.7)

),ˆ ,ˆ()ˆ ,ˆ ,0(ˆd)ˆ ,ˆ ,0()ˆ ,ˆ ,( µµµµµ
µ
ψµµ

µµ
ψπµµψ ′′′′′−′′+′

′
=′ RZZD

    (10.5.8)

)ˆ , ,0()ˆ ,ˆ ,0()ˆ ,ˆ ,(† µΨµµ
µµ
ψπµµψ ′−′−

′
=′ XZU

 ),ˆ ,ˆ()ˆ ,ˆ ,0(ˆd † µµµµµ
µ
ψ ′′′′′−′′+ TZ     (10.5.9)

)ˆ ,ˆ()ˆ ,ˆ ,( †
2

† µµµµψ ′=′ TD

  )ˆ , ,0()ˆ ,ˆ ,0()ˆ ,ˆ(ˆd µΨµµµµµ
µ
ψ ′−′−′′′′′′

′
+ XZR

  ).ˆ ,ˆ()ˆ ,ˆ ,0()ˆ ,ˆ(ˆdˆd † µµµµµµµµ
π
ψ ′′′′′′′−′′′′′′′′′+ TZR

        (10.5.10)

Finally, substituting Eqs. (10.5.1)–(10.5.10) into Eqs. (10.4.7)–(10.4.10) yields

)ˆ ,ˆ()ˆ ,0(1)ˆ ,0()ˆ ,ˆ(1 )ˆ ,ˆ( µµµ
µ

µµµ
µΨ

µµ ′−−′′
′

−=
∂

′∂

↑

RKKRR

    )ˆ ,ˆ ,0()ˆ ,ˆ(ˆd1 )ˆ ,ˆ ,0( µµµµµ
µ

µµ
µµ
π ′′′′′′′

′
+′−

′
+ ZRZ

    )ˆ ,ˆ()ˆ ,ˆ ,0(ˆd1 µµµµµ
µ

′′′′′−−′′+ RZ

    ),ˆ ,ˆ()ˆ ,ˆ ,0()ˆ ,ˆ(ˆdˆd1 µµµµµµµµ
π

′′′′′′′−′′′′′′′′′+ RZR

(10.5.11a)
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)ˆ ,ˆ ,0()ˆ ,0 ,( )ˆ ,0()ˆ ,ˆ(1 )ˆ ,ˆ( µµµΨ
µµ
πµµµ

µΨ
µµ ′

′
+′′

′
−=

∂
′∂

↑

ZXKTT

   )ˆ ,ˆ ,0()ˆ ,ˆ(ˆd1 µµµµµ
µ

′′′′′′′
′

+ ZT

   )ˆ ,ˆ()ˆ ,ˆ ,0(ˆd)ˆ ,0 ,(1 µµµµµµΨ
µ

′′′′′−′′+ RZX

   ),ˆ ,ˆ()ˆ ,ˆ ,0()ˆ ,ˆ(ˆdˆd1 µµµµµµµµ
π

′′′′′′′−′′′′′′′′′+ RZT

   (10.5.12a)

)ˆ , ,0()ˆ ,ˆ ,0()ˆ ,0 ,(
)ˆ ,ˆ(†

µΨµµµΨ
µµ
π

Ψ
µµ

′−′−
′

=
∂

′∂

↑

XZX
R

  )ˆ ,ˆ()ˆ ,ˆ ,0(ˆd)ˆ ,0 ,(1 † µµµµµµΨ
µ

′′′′′−′′+ TZX

  )ˆ , ,0()ˆ ,ˆ ,0()ˆ ,ˆ(ˆd1 µΨµµµµµ
µ

′−′−′′′′′′
′

+ XZT

  ),ˆ ,ˆ()ˆ ,ˆ ,0()ˆ ,ˆ(ˆdˆd1 † µµµµµµµµ
π

′′′′′′′−′′′′′′′′′+ TZT

      (10.5.13a)

)ˆ , ,0()ˆ ,ˆ ,0( )ˆ ,ˆ()ˆ ,0(1 
)ˆ ,ˆ( †

†

µΨµµ
µµ
πµµµ

µΨ
µµ

′−′−−
′

+′−−=
∂

′∂

↑

XZTK
T

  )ˆ ,ˆ()ˆ ,ˆ ,0(ˆd1 † µµµµµ
µ

′′′′′−−′′+ TZ

  )ˆ , ,0()ˆ ,ˆ ,0()ˆ ,ˆ(ˆd1 µΨµµµµµ
µ

′−′−′′′′′′
′

+ XZR

  ),ˆ ,ˆ()ˆ ,ˆ ,0()ˆ ,ˆ(ˆdˆd1 † µµµµµµµµ
π

′′′′′′′−′′′′′′′′′+ TZR

    (10.5.14a)

where the subscript ↑  indicates that the infinitesimally thin layer is added on top of
the slab. Equations (10.5.11a)–(10.5.14a) are called invariant imbedding equations
and must be supplemented by the initial conditions

,)ˆ ,ˆ( 0 0R =′
=Ψµµ         (10.5.15)

,)ˆ ,ˆ( 0 0T =′
=Ψµµ         (10.5.16)

,)ˆ ,ˆ(
0

† 0R =′
=Ψ

µµ         (10.5.17)

,)ˆ ,ˆ(
0

† 0T =′
=Ψ

µµ         (10.5.18)

where 0  is the 44×  zero matrix.
In practice, the angular integrals in Eqs. (10.5.11a)–(10.5.14a) are replaced by ap-



Chapter 10258

propriate quadrature sums, thereby yielding a system of ordinary differential equa-
tions. This system along with Eqs. (10.5.15)–(10.5.18) forms an initial-value problem
which can be solved with one of the available numerical techniques.

Notice that Eqs. (10.5.11a) and (10.5.12a) are independent of Eqs. (10.5.13a) and
(10.5.14a) and can be solved separately if only the matrices R and T are required.
Furthermore, solving Eq. (10.5.11a) alone is sufficient if only the matrix R is re-
quired.

Although the invariant imbedding equations do not yield the internal radiation
field directly, the latter can be found by combining the invariant imbedding equations
and the adding method. Specifically, let us assume that one needs to find the radiation
field at a level ψ  inside a scattering slab having a particle thickness ψΨ >  (Fig.
10.4.1). One can first compute the reflection and transmission matrices of layers 1 and
2 by solving the invariant imbedding equations and then find the internal radiation
field at the level ψ  from Eqs. (10.4.1)–(10.4.4). This procedure is easily generalized
if the internal radiation field is required at more than one level.

The reader may find it a useful exercise to derive a system of four companion in-
variant imbedding equations which have on the left-hand side the derivatives

,)ˆ ,ˆ( ↓∂′∂ ΨµµR  ,)ˆ ,ˆ( ↓∂′∂ ΨµµT  ,)ˆ,ˆ(†
↓∂′∂ ΨµµR  and ,)ˆ,ˆ(†

↓∂′∂ ΨµµT  where
the subscript ↓  indicates that the infinitesimally thin layer is added to the bottom of
the slab. Obviously, this is done by evaluating the limit .0)( →−ψΨ  We will refer
to these equations symbolically as Eqs. (10.5.11b)–(10.5.14b). If the scattering layer
is homogeneous, it does not matter whether the infinitesimally thin layer is added to
the top or to the bottom of the main layer. Therefore, by equating the right-hand sides
of Eqs. (10.5.11a) and (10.5.11b), Eqs. (10.5.12a) and (10.5.12b), Eqs. (10.5.13a) and
(10.5.13b), and Eqs. (10.5.14a) and (10.5.14b), one can obtain a system of four non-
linear integral equations for the matrices ,R ,T ,†R  and .†T  Unfortunately, this sys-
tem of equations allows an infinite continuous set of solutions, only one of which is
physically relevant, and is very difficult to solve numerically (de Rooij and Domke,
1984).

10.6 Ambarzumian equation

If the scattering slab is homogeneous and semi-infinite, its reflection matrix for illu-
mination from above must be independent of .Ψ  Therefore, by equating the deriva-
tive ↑∂′∂ Ψµµ )ˆ ,ˆ(R  in Eq. (10.5.11a) to zero, we obtain the following Ambarzumian
nonlinear integral equation for the reflection matrix:

)ˆ ,ˆ()ˆ(1)ˆ()ˆ ,ˆ(1 µµµ
µ

µµµ
µ

′−+′′
′

RKKR

)ˆ ,ˆ()ˆ ,ˆ(ˆd1 )ˆ ,ˆ( µµµµµ
µ

µµ
µµ
π ′′′′′′′

′
+′−

′
= ZRZ
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    )ˆ ,ˆ()ˆ ,ˆ(ˆd1 µµµµµ
µ

′′′′′−−′′+ RZ

        ).ˆ ,ˆ()ˆ ,ˆ()ˆ ,ˆ(ˆdˆd1 µµµµµµµµ
π

′′′′′′′−′′′′′′′′′+ RZR           (10.6.1)

This equation permits only a discrete set of solutions, and the physically relevant so-
lution can be selected using a simple linear constraint (de Rooij and Domke, 1984).
For example, when the semi-infinite slab is composed of nonabsorbing particles, the
linear constraint can be derived from the obvious fact that the net flow of power
through the boundary of the layer must be equal to zero: all electromagnetic energy
entering the layer must eventually leave it. The actual numerical procedure involves
replacing the integrals in Eq. (10.6.1) with appropriate quadrature sums and solving
the resulting system of nonlinear algebraic equations using the method of iterations.

10.7 Reciprocity relations for the reflection and
transmission matrices

Assuming that the solution of the initial value problem (10.5.11a)–(10.5.18) is unique,
one can easily derive that the reflection and transmission matrices obey the following
reciprocity relations:

,)] , ; ,([) , ; ,( 3
T

3 ∆R∆R ϕµϕµπϕµπϕµ ′′=++′′           (10.7.1)

,)] , ; ,([) , ; ,( 3
T†

3
† ∆R∆R ϕµϕµπϕµπϕµ ′′=++′′           (10.7.2)

,)] , ; ,([) , ; ,( 3
T

3
† ∆T∆T ϕµϕµπϕµπϕµ ′′=++′′           (10.7.3)

where, as before, ].1 ,1 ,1 ,1[diag3 −=∆  Equations (10.7.1)–(10.7.3) ultimately fol-
low from the reciprocity relations for the phase and extinction matrices, Eqs. (3.7.31)
and (3.8.16), which can be written in the form

,)] , ; ,([) , ; ,( 3
T

3 ∆Z∆Z ϕµϕµπϕµπϕµ ′′=+−+′′−           (10.7.4)

.)] ,([) ,( 3
T

3 ∆K∆K ϕµπϕµ =+−           (10.7.5)

Indeed, Eqs. (10.2.8) and (10.2.16) along with the matrix identity TTT)( ABAB =
yield

.)] , ;0 ,([) , ; ,0( 3
T

3 ∆X∆X ϕµΨπϕµΨ =+−           (10.7.6)

The initial conditions (10.5.15)–(10.5.18) obviously satisfy the reciprocity relations
(10.7.1)–(10.7.3). We can then add an infinitesimally thin layer to the “initial slab” of
particle thickness zero and find out from Eqs. (10.5.11a)–(10.5.14a) that the reflection
and transmission matrices of the resulting slab also satisfy the reciprocity relations
(10.7.1)–(10.7.3). We can continue this recursive process of adding infinitesimally
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thin layers and find out that at each recursive step the resulting reflection and trans-
mission matrices satisfy the reciprocity relations (10.7.1)–(10.7.3). Therefore, the
reflection and transmission matrices of the final slab also satisfy these relations.

The reciprocity relations are fundamental properties of the reflection and trans-
mission matrices and can be used in practice to check the accuracy of add-
ing/doubling or invariant imbedding computer codes. Alternatively, they can be used
to considerably shorten the requisite computer time by reducing the number of inde-
pendent scattering geometries (i.e., the number of couplets }ˆ,ˆ{ µµ ′  for which the
reflection and transmission matrices are computed explicitly) by a factor of almost
two.

10.8 Notes and further reading

The adding concept goes back to Stokes (1862), who analyzed the reflection and
transmission of light by a stack of glass plates, and it was introduced to radiative
transfer by van de Hulst (1963). Equations (10.3.3) and (10.3.4) generalize the inter-
action principle introduced by Redheffer (1962) and later used by Grant and Hunt
(1969) to derive formulas of the so-called matrix operator method closely related to
the adding method (see Hunt, 1971; Plass et al., 1973). The invariant imbedding
equations can be derived using heuristic so-called principles of invariance pioneered
by Ambarzumian (1943) and Chandresekhar (1947b) (see also Chandrasekhar, 1950).
Our derivation of the vector adding and invariant imbedding equations for vertically
inhomogeneous scattering slabs containing arbitrarily oriented nonspherical particles
follows that in Mishchenko (1990a).

Ishimaru et al. (1984) solved the boundary-value problem (10.1.6)–(10.1.8) for a
homogeneous slab filled with spheroids having vertically aligned axes using the so-
called eigenvalue-eigenvector technique (Ishimaru, 1978). Liou and Takano (2002)
used the adding method to compute the reflectance of a slab comprising ice crystals
randomly oriented in the horizontal plane. Picard et al. (2004) modeled the radar
backscatter from forested areas by solving the plane-parallel VRTE with the so-called
discrete ordinate method.
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Chapter 11

Macroscopically isotropic and mirror-symmetric
scattering media

An important particular type of discrete scattering medium is a macroscopically iso-
tropic and mirror-symmetric medium (hereinafter isotropic and symmetric medium,
or ISM). By definition, an ISM comprises spherically symmetric and/or randomly
oriented nonspherical particles. Furthermore, each nonspherical particle must have a
plane of symmetry and/or must be accompanied by a mirror counterpart.

Although this type of scattering medium might be thought to be a rather special
case, it nonetheless provides a very good numerical description of the scattering prop-
erties of many particle collections encountered in practice and is by far the most often
used theoretical model. Moreover, we shall see below that the assumption of micro-
scopic isotropy and mirror symmetry leads to significant mathematical simplifications
and allows one to develop efficient computer algorithms.

It turns out that a convenient concept in analyses of single and multiple scattering
of light by ISMs is that of a scattering matrix. As we have seen before, the phase ma-
trix is defined such that it relates the Stokes parameters of the incident and scattered
waves defined relative to the meridional planes containing the incidence and scatter-
ing directions. In contrast, the scattering matrix F relates the Stokes parameters of the
incident and scattered waves defined with respect to the scattering plane, that is, the
plane through the unit vectors incn̂  and scan̂  (Perrin, 1942; van de Hulst, 1957).

A simple way to introduce the scattering matrix is to direct the z-axis of the refer-
ence frame along the incident beam and superpose the meridional plane with 0=ϕ
and the scattering plane (Fig. 11.0.1). Then the scattering matrix F can be defined as

).0,0;0,()( incincscascasca ==== ϕθϕθθ ZF      (11.0.1)

In general, all 16 elements of the scattering matrix are nonzero and depend on the
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particle orientation with respect to the incident and scattered beams.
This choice of laboratory reference frame, with the z-axis along the incidence di-

rection and the xz-half-plane with 0≥x  coinciding with the scattering plane, can
often be inconvenient because any change in the incidence direction and/or orienta-
tion of the scattering plane also changes the orientation of the scattering particle with
respect to the coordinate system. However, we will show in this chapter that the no-
tion of the scattering matrix can be very useful in application to ISMs because then
the scattering matrix becomes independent of incidence direction and orientation of
the scattering plane, depends only on the angle )ˆˆarccos( scainc nn ⋅=Θ  between the
incidence and scattering directions, and has a simple block-diagonal structure.

11.1 Symmetries of the Stokes scattering matrix

We begin by considering special symmetry properties of the amplitude scattering
matrix that exist when both the incidence and the scattering directions lie in the xz-
plane (van de Hulst, 1957). For the particle shown schematically in Fig. 11.1.1(a), let

�
�

�
�
�

�

2221

1211

SS
SS

    (11.1.1a)

be the amplitude scattering matrix that corresponds to the directions of incidence and
scattering given by incn̂  and ,ˆ scan  respectively (Fig. 11.1.2). Rotating this particle by

°180  about the bisectrix (i.e., the line in the scattering plane that bisects the angle
Θπ −  between the unit vectors incn̂−  and scan̂  in Fig. 11.1.2) puts it in the orienta-

tion schematically shown in Fig. 11.1.1(b). It is clear that the amplitude scattering
matrix (11.1.1a) is also the amplitude scattering matrix for this rotated particle when

scaθ

x

y
O

z

incn̂

scan̂

Figure 11.0.1.  On the definition of the scattering matrix.
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the directions of incidence and scattering are given by scan̂−  and ,ˆ incn−  respectively.
Therefore, the reciprocity relation (3.4.21) implies that the amplitude scattering ma-
trix of the particle shown in Fig. 11.1.1(b) that corresponds to the original directions
of incidence and scattering, incn̂  and ,ˆ scan is simply

.
2212

2111
�
�

�
�
�

�

−
−
SS
SS

  (11.1.1b)

Mirroring the original particle, Fig. 11.1.1(a), with respect to the scattering plane
gives the particle shown in Fig. 11.1.1(c). If we also reversed the direction of the unit
vectors incϕ̂  and scaϕ̂  in Fig. (11.1.2), then we would have the same scattering prob-

(a) (b) (c) (d)

Figure 11.1.1.  Two orientations of an arbitrary particle and two orientations of its mirror
counterpart that give rise to certain symmetries in scattering patterns. (After van de Hulst
1957.)

Bisectrix

x

z

O

incn̂
scan̂

incn̂−

scan̂−

Θ

Figure 11.1.2.  The xz-plane of the reference frame acts as the scattering plane. The arrows
perpendicular to the unit n̂  vectors show the corresponding unit θ̂  vectors. The symbols ⊕
and ⊙ indicate the corresponding unit ϕ̂  vectors, which are directed into and out of the paper,
respectively.
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lem as for the particle shown in Fig. 11.1.1(a). We may thus conclude that the ampli-
tude scattering matrix for the particle shown in Fig. 11.1.1(c) that corresponds to the
directions of incidence and scattering incn̂  and scan̂  is

.
2221

1211
�
�

�
�
�

�

−
−
SS
SS

  (11.1.1c)

Finally, mirroring the original particle with respect to the bisectrix plane (i.e., the
plane through the bisectrix and the y-axis) gives the particle shown in Fig. 11.1.1(d).
Since this particle is simply the mirror-symmetric counterpart of the particle shown in
Fig. 11.1.1(b), its amplitude scattering matrix corresponding to the directions of inci-
dence and scattering incn̂  and scan̂  is

.
2212

2111
�
�

�
�
�

�

SS
SS

  (11.1.1d)

It can be seen that any two of the three transformations shown in Figs. 11.1.1(b)–
11.1.1(d) give the third.

We will now discuss the implications of Eqs. (11.1.1a)–(11.1.1d) for Stokes scat-
tering matrices of collections of independently scattering particles, by considering the
following four examples (van de Hulst, 1957):

1. Let us first assume that there is only one kind of particle and that each particle
in a specific orientation, say Fig. 11.1.1(a), is accompanied by a particle in
the reciprocal orientation, Fig. 11.1.1(b). It then follows from Eqs. (3.7.11)–
(3.7.26), (11.0.1), (11.1.1a), and (11.1.1b) that the single-particle scattering
matrix averaged over particle states has the following symmetry:

.
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34332313
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FFFF
FFFF
FFFF
FFFF

    (11.1.2)

The number of independent matrix elements is 10.

2. As a second example, let us assume that for each particle in orientation (a) a
mirror particle in orientation (c) is present (Fig. 11.1.1). This excludes, for
example, scattering media composed of only right-handed or only left-handed
helices. It is easy to verify that the resulting average scattering matrix in-
volves eight independent elements and has the following structure:
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    (11.1.3)
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3. As a third example, assume that any particle in orientation (a) is accompanied
by a mirror counterpart in orientation (d), Fig. 11.1.1. The average scattering
matrix becomes

�
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�

�
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�
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����−��−��−
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FFFF
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FFFF

    (11.1.4)

and has 10 independent elements.

4. Finally, let us make any two of the preceding assumptions. The third assump-
tion follows automatically, so that there are equal numbers of particles in ori-
entations (a), (b), (c), and (d). The resulting average scattering matrix is
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�

�
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ξξ

ξξ

ξξ

ξξ
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FF
FF

FF
FF

    (11.1.5)

and has eight nonzero elements, of which only six are independent.

11.2 Macroscopically isotropic and mirror-symmetric
scattering medium

Now we are ready to consider scattering by a medium containing randomly oriented
particles. This means that there are many particles of each type and their orientation
distribution is uniform (see Eq. (5.3.9)).  In this case the assumptions of example 1
from the previous section are satisfied, and the average scattering matrix is given by
Eq. (11.1.2). Furthermore, if particles and their mirror counterparts are present in
equal numbers or each particle has a plane of symmetry, then the assumptions of ex-
ample 4 are satisfied, and the resulting average scattering matrix is given by Eq.
(11.1.5).

As a consequence of random particle orientation, the scattering medium is macro-
scopically isotropic (i.e., there is no preferred propagation direction and no preferred
plane through the incidence direction). Therefore, the scattering matrix becomes in-
dependent of the incidence direction and the orientation of the scattering plane and
depends only on the angle between the incidence and scattering directions, that is, the
scattering angle

].,0[        ),ˆˆarccos( scainc πΘΘ ∈⋅= nn

Furthermore, the assumptions of example 4 ensure that the scattering medium is mac-
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roscopically mirror-symmetric with respect to any plane and make the structure of the
scattering matrix especially simple. Therefore, scattering media composed of equal
numbers of randomly oriented particles and their mirror counterparts and/or of ran-
domly oriented particles having a plane of symmetry can be called macroscopically
isotropic and mirror-symmetric. To emphasize that the scattering matrix of an ISM
depends only on the scattering angle, we rewrite Eq. (11.1.5) as

.
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F        (11.2.1)

As a direct consequence of Eqs. (3.7.29) and (3.7.30) we have the inequalities

,011 ≥�� ξF     (11.2.2)

.4,,1,        ,|| 11 �=��≤�� jiFFij ξξ     (11.2.3)

Additional general inequalities for the elements of the scattering matrix (11.2.1) are as
follows:

,][4][][4][ 2
12

2
2211

2
34

2
4433 ξξξξξξ ��−��+��≤��+��+�� FFFFFF   (11.2.4)

,|| 22114433 ξξξξ ��−��≤��−�� FFFF     (11.2.5)

,|| 12111222 ξξξξ ��−��≤��−�� FFFF     (11.2.6)

.|| 12111222 ξξξξ ��+��≤��+�� FFFF     (11.2.7)

The proof of these and other useful inequalities is given in Hovenier et al. (1986).

11.3 Phase matrix

Knowledge of the matrix ξΘ �� )(F  can be used to calculate the average Stokes phase
matrix for an ISM. Assume that πϕϕ <−< incsca0  and consider the phase matrices

ξϕθϕθ �� ),;,( incincscascaZ  and .),;,( scaincincsca
ξϕθϕθ ��Z  The second matrix involves

the same polar angles of the incident and scattered beams as the first, but the azimuth
angles are switched, as indicated in their respective scattering geometries; these are
shown in Figs. 11.3.1(a) and (b). The phase matrix links the Stokes vectors of the
incident and scattered beams, specified relative to their respective meridional planes.
Therefore, to compute the Stokes vector of the scattered beam with respect to its me-
ridional plane, we must:

● Calculate the Stokes vector of the incident beam with respect to the scattering
plane.
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● Multiply it by the scattering matrix, thereby obtaining the Stokes vector of the
scattered beam with respect to the scattering plane.

● Compute the Stokes vector of the scattered beam with respect to its meridi-
onal plane (Chandrasekhar, 1950).

This procedure involves two rotations of the reference plane, as shown in Figs.

1σ

2σ

y

x

z

scan̂

Θ incn̂

1σ
2σ

y

x

z

Θ
incn̂

(a)

(b)

scan̂

Figure 11.3.1.  Illustration of the relationship between the phase and scattering matrices.
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11.3.1(a) and (b), and yields
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where

,2 ,1        ,2sin        ,2cos === iSC iiii σσ     (11.3.3)

and the rotation matrix L is defined by Eq. (2.8.4).  (Recall that a rotation angle is
positive if the rotation is performed in the clockwise direction when one is looking in
the direction of propagation; see Section 2.8.)  The scattering angle Θ  and the angles

1σ  and 2σ  can be calculated from ,scaθ  ,incθ  ,scaϕ  and incϕ  using spherical trigo-
nometry:

),cos(sinsincoscoscos incscaincscaincsca ϕϕθθθθΘ −+=     (11.3.4)

,
sinsin

coscoscoscos inc

incsca

1 Θθ
Θθθσ −=      (11.3.5)

.
sinsin

coscoscoscos sca

scainc

2 Θθ
Θθθσ −=     (11.3.6)
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Equations (11.3.1) and (11.3.3)–(11.3.6) demonstrate the obvious fact that the
phase matrix of an ISM depends only on the difference between the azimuthal angles
of the scattering and incidence directions rather than on their specific values. In par-
ticular,

ξξ ϕθϕθϕπθϕπθ ��=�−−� ),;,( )2,;2,( incincscascascaincincsca ZZ     (11.3.7)

or, formally allowing negative azimuth-angle values,

.),;,( ),;,( incincscascascaincincsca
ξξ ϕθϕθϕθϕθ ��=�−−� ZZ       (11.3.8)

Comparison of Eqs. (11.3.1) and (11.3.2) yields the symmetry relation (Hovenier,
1969):

ξξ ϕθϕθϕθϕθ �−−�=�� ),;,( ),;,( incincscascascaincincsca ZZ

   ,),;,( 34
incincscasca

34 ∆Z∆ ξϕθϕθ ��=     (11.3.9)
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Obviously, Eq. (11.3.9) is a manifestation of mirror symmetry with respect to the me-
ridional plane of the incidence direction (cf. Fig. 11.3.1) or, equivalently, with respect
to the xz-half-plane with .0≥x  It is also easy to see from either Eq. (11.3.1) or Eq.
(11.3.2) that (Hovenier, 1969)

,),;,( ),;,( 34
incincscasca

34
incincscasca ∆Z∆Z ξξ ϕθϕθϕθπϕθπ ��=�−−�

      (11.3.11)

which is a manifestation of mirror symmetry with respect to the xy-plane. Finally, we
can verify that

ξπϕθππϕθπ �+−+−� ),;,( scascaincincZ

ξϕθπϕθπ �−−�= ),;,( scascaincincZ

,]),;,([ 3
Tincincscasca

3 ∆Z∆ ξϕθϕθ ��=   (11.3.12)

where the matrix 3∆  is given by Eq. (3.7.32). Obviously, this is the reciprocity rela-
tion (3.7.31). Other symmetry relations can be derived by forming combinations of
Eqs. (11.3.9), (11.3.11), and (11.3.12). For example, combining Eqs. (11.3.9) and
(11.3.11) yields

.),;,( ),;,( incincscascascaincincsca
ξξ ϕθϕθϕθπϕθπ ��=�−−� ZZ   (11.3.13)

Although Eq. (11.3.1) is valid only for ,0 incsca πϕϕ <−<  combining it with Eq.
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(11.3.9) yields the phase matrix for all possible incidence and scattering directions.
The symmetry relations (11.3.11) and (11.3.12) further reduce the range of independ-
ent scattering geometries and can be very helpful in theoretical calculations or con-
sistency checks on measurements.

11.4 Forward-scattering direction and extinction matrix

By virtue of spatial isotropy, the extinction matrix of an ISM is independent of the
direction of light propagation and orientation of the reference plane used to define the
Stokes parameters. It also follows from Eqs. (3.8.10)–(3.8.13) and (11.1.1a)–(11.1.1d)
that

ξξξξ ΚΚΚΚ ��=��=��=�� 24231413

.042413231 =��=��=��=��= ξξξξ ΚΚΚΚ

Furthermore, we are about to show that the remaining off-diagonal elements of the
average extinction matrix also vanish.

We will assume for simplicity that light is incident along the positive direction of
the z-axis of the laboratory reference frame and will use the xz-half-plane with 0≥x
as the meridional plane of the incident beam. Let us affix a reference frame to the
particle and call it the particle reference frame. We will also assume that the initial
orientation of a particle is such that the particle reference frame coincides with the
laboratory reference frame. The forward-scattering amplitude matrix of the particle in
the initial orientation computed in the laboratory reference frame is thus equal to the
forward-scattering amplitude matrix computed in the particle reference frame. We
will denote the latter as .PS

Let us now rotate the particle along with its reference frame through an Euler an-
gle α  about the z-axis in the clockwise direction as viewed in the positive z-direction
(Figs. C.1 and 11.4.1) and denote the forward-scattering amplitude matrix of this ro-
tated particle with respect to the laboratory reference frame as .α

LS  This matrix re-
lates the column of the electric field vector components of the incident field to that of
the field scattered in the exact forward direction:
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ϕ

θ S∝     (11.4.1)

where the subscript L indicates that all field components are computed in the labora-
tory reference frame. Figure 11.4.1 shows the directions of the respective unit -θ  and

vectors-ϕ for the incident and the forward-scattered beams. Simple trigonometry al-
lows us to express the column of the electric vector components in the particle refer-
ence frame in terms of that in the laboratory reference frame by means of a trivial
matrix multiplication (see Fig. 11.4.1):
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where αcos=C  and .sinα=S  Conversely,
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Rewriting Eq. (11.4.1) in the particle reference frame,
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and using Eqs. (11.4.2) and (11.4.3), we finally derive
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For 0=α  and ,2πα =

,
2221
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�
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SS
S     (11.4.6)
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θ θ

scainc ˆ,ˆ
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Figure 11.4.1.  Rotation of the particle through an Euler angle α  about the z-axis transforms
the laboratory reference frame L{x, y, z} into the particle reference frame }.,,{ zyxP ′′  Since
both the incident and the scattered beams propagate in the positive z-direction, their respective
unit θ̂  and ϕ̂  vectors are the same.



Chapter 11272
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Because we are assuming random orientation of the particles in the small volume
element, for each particle in the initial orientation, ,0=α  there is always a particle
of the same type but in the orientation corresponding to .2πα =  It, therefore, fol-
lows from Eqs. (3.8.9), (3.8.14), (11.4.6), and (11.4.7) that

.043342112 =��=��=��=�� ξξξξ ΚΚΚΚ

Finally, recalling Eq. (3.9.9), we conclude that the extinction matrix of a small vol-
ume element containing equal numbers of randomly oriented particles and their mir-
ror-symmetric counterparts and/or randomly oriented particles having a plane of
symmetry is diagonal:

,)ˆ( ext ∆ΚΚ ξξξ ��=��≡�� Cn     (11.4.8)

where ξ�� extC  is the average extinction cross section per particle which is now inde-
pendent of the direction of propagation and polarization state of the incident light.
This significant simplification is useful in many practical circumstances.

The scattering matrix also becomes simpler when .0=Θ  From Eqs. (3.7.12),
(3.7.15), (3.7.22), (3.7.25), (1.4.6), and (1.4.7), we find that

.0)0()0()0()0( 43342112 =��=��=��=�� ξξξξ FFFF

Equation (11.4.5) gives for :4πα =
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Equations (3.7.16), (3.7.21), (11.4.6), and (11.4.9) and a considerable amount of alge-
bra yield

.)0()0( 3322 ξξ ��=�� FF

Thus, recalling Eq. (11.2.1), we find that the forward-scattering matrix for an ISM is
diagonal and has only three independent elements:
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(van de Hulst, 1957).
Rotationally-symmetric particles are obviously mirror-symmetric with respect to

the plane through the direction of propagation and the axis of symmetry. Choosing
this plane as the plane-zx ′′ of the particle reference frame, we see from Eq. (11.1.1c)
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that .02112 == PP SS  This simplifies the amplitude scattering matrices (11.4.6) and
(11.4.9) and ultimately yields

,)0()0(2)0( 112244 ξξξ ��−��=�� FFF     (11.4.11)

ξξ ��≤��≤ )0()0(0 1122 FF    (11.4.12)

(Mishchenko and Travis, 1994a; Hovenier and Mackowski, 1998).

11.5 Backward scattering

Equation (11.0.1) provides an unambiguous definition of the scattering matrix in
terms of the phase matrix, except for the exact backscattering direction. Indeed, the
backscattering direction for an incidence direction ),( incinc ϕθ  is given by ,( incθπ −

).inc πϕ + Therefore, the complete definition of the scattering matrix should be as
follows:

��

�
�
�

=
∈

=
               ,for             )0,0;,(

         ),,0[for          )0,0;0,(
)(

sca

scasca
sca

πθππ
πθθ

θ
Z
Z

F

which seems to be different from Eq. (11.0.1). It is easy to see, however, that

),0,0;,()0,0;,()()0,0;0,( ππππππ ZZLZ ≡=

see Eq. (2.8.3), which demonstrates the equivalence of the two definitions.
We are ready now to consider the case of scattering in the exact backward direc-

tion, using the complete definition of the scattering matrix and the backscattering
theorem derived in Section 3.4. Let us assume that light is incident along the positive
z-axis of the laboratory coordinate system and is scattered in the opposite direction;
we use the xz half-plane with 0≥x  as the meridional plane of the incident beam. As
in the previous section, we consider two particle orientations relative to the laboratory
reference frame:

● The initial orientation, when the particle reference frame coincides with the
laboratory reference frame.

● The orientation obtained by rotating the particle about the z-axis through a
positive Euler angle .α

Figure 11.5.1 shows the respective unit -θ  and vectors-ϕ for the incident beam and
the backscattered beam. Denote the backscattering amplitude matrix in the particle
reference frame as PS  and the backscattering amplitude matrix in the laboratory ref-
erence frame for the rotated particle as .α

LS  A derivation similar to that in the previ-
ous section gives
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This formula can be simplified, because the backscattering theorem (3.4.22) yields
.1221 PP SS −=  Assuming that particles are randomly oriented and considering the

cases 0=α  and ,2πα =  we find that

.0)()()()( 43342112 =��=��=��=�� ξξξξ ππππ FFFF

Similarly, considering the cases 0=α  and 4πα =  yields

.)()( 2233 ξξ ππ ��−=�� FF

Finally, recalling Eqs. (3.7.38) and (11.2.1), we conclude that the backscattering ma-
trix for an ISM is diagonal and has only two independent elements:
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Figure 11.5.1.  As in Fig. 11.4.1, but for the case of scattering in the exact backward direction.
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(Mishchenko and Hovenier, 1995). According to Eq. (11.2.3) ,1144 ξξ ��≤�� FF  so we
always have

.0)(22 ≥�� ξπF     (11.5.3)

11.6 Scattering cross section and asymmetry parameter

Like all other macroscopic scattering characteristics, the average scattering cross sec-
tion per particle for an ISM is independent of the direction of illumination. Therefore,
we will evaluate the integral on the right-hand side of Eq. (3.9.10) assuming that the
incident light propagates along the positive z-axis of the laboratory reference frame
and that the xz-half-plane with 0≥x  is the meridional plane of the incident beam.
Figure 11.6.1 shows that in order to compute the Stokes column vector of the scat-
tered beam with respect to its own meridional plane, we must rotate the reference
frame of the incident light by the angle ,ϕ  thereby modifying the Stokes column
vector of the incident light according to Eq. (2.8.3) with ,ϕη =  and then multiply
the new Stokes column vector of the incident light by the scattering matrix. There-
fore, the average phase matrix is simply
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    (11.6.1)

Substituting this formula in Eq. (3.9.10), we find that the average scattering cross
section per particle is independent of the polarization state of the incident light and is
given by

.)( sin d2 11

  

0  
sca ξ

π

ξ θθθπ ��=�� FC     (11.6.2)

The corresponding asymmetry parameter must also be independent of ,ˆ incn  and
Eqs. (3.9.15), (3.9.19), and (11.6.1) yield

.)( cossin d2cos 11

  

0  sca
ξ

π

ξ
θθθθπΘ ��

��
=�� F

C
    (11.6.3)

Obviously, �� Θcos  is polarization-independent. The average absorption cross sec-
tion,

,scaextabs ξξξ ��−��=�� CCC     (11.6.4)
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and the single-scattering albedo,

,
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��
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C
C

    (11.6.5)

are also independent of the direction and polarization state of the incident beam. The
same, of course, is true of the extinction, scattering, and absorption efficiency factors,
defined as
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respectively, where ξ��G  is the average area of the particle projection.

11.7 Thermal emission

Because the ensemble-averaged emission Stokes column vector for an ISM must be
independent of the emission direction, we will calculate the integral on the right-hand
side of Eq. (3.13.6) for light emitted in the positive direction of the z-axis and will use
the meridional plane 0=ϕ  as the reference plane for defining the emission Stokes
column vector.  It is then obvious from Fig. 11.7.1 that the corresponding average
phase matrix can be calculated as

y

x

z

scan̂

incn̂

ϕ

θ

Figure 11.6.1.  Illustration of the relationship between the phase and scattering matrices when
the incident light propagates along the positive z-axis.



Macroscopically isotropic and mirror-symmetric scattering media 277

ξξ θϕ �′�′−=�′� )()()ˆ,ˆ( FLZ nn

.

)()(00
2cos)(2cos)(2sin)(2sin)(
2sin)(2sin)(2cos)(2cos)(

00)()(

4434

34332212

34332212

1211

�
�
�
�
�

�

�

�
�
�
�
�

�

�

�′��′�−

′�′�′�′�′�′�−′�′�−

′�′�′�′�′�′�′�′�

�′��′�

=

ξξ

ξξξξ

ξξξξ

ξξ

θθ
ϕθϕθϕθϕθ
ϕθϕθϕθϕθ

θθ

FF
FFFF
FFFF

FF

 (11.7.1)

Inserting this formula and Eqs. (11.4.8) and (11.6.2) in Eq. (3.13.6) yields

),,(),(),,ˆ( babsee ωωω ξξξ TCTT IΚΚ ��=��≡�� n     (11.7.2)

where ξ�� absC  may depend on frequency and ),(b ωTI  is the blackbody Stokes col-
umn vector defined by Eq. (3.13.4). Thus, the emitted radiation is not only isotropic
but also unpolarized. The first (and the only nonzero) element of the average emission
Stokes column vector is simply equal to the product of the average absorption cross
section and the Planck function.

11.8 Spherically symmetric particles

The structure of the scattering matrix simplifies further for spherically symmetric
particles, that is, for homogeneous or radially inhomogeneous spherical bodies com-

y

x

z

n̂

n̂

ϕ

′

′

′

θ

Figure 11.7.1.  Illustration of the relationship between the phase and scattering matrices when
the scattered light propagates along the positive z-axis.
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posed of optically isotropic materials. The refractive index inside such particles is a
function of the distance from the particle center only. Irrespective of their “orienta-
tion” relative to the laboratory reference frame, spherically symmetric particles are
obviously mirror-symmetric with respect to the xz-plane. Directing the incident light
along the positive z-axis, restricting the scattering direction to the xz-half-plane with

,0≥x  and using this plane for reference, we find from Eqs. (11.1.1a) and (11.1.1c)
that the amplitude scattering matrix is always diagonal: .02112 ≡≡ SS  Therefore,
Eqs. (3.7.11), (3.7.16), (3.7.21), (3.7.26), and (11.2.1) yield
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A scattering matrix of this type appears in the standard Lorenz–Mie theory of light
scattering by homogeneous isotropic spheres. The results of the previous sections on
forward and backward scattering imply that

,)0()0( 1133 ξξ ��=�� FF     (11.8.2)

.)()( 1133 ξξ ππ ��−=�� FF      (11.8.3)

11.9 Effects of nonsphericity and orientation

The previous discussion of symmetries enables us to summarize the most fundamental
effects of particle nonsphericity and orientation on the average single-particle character-
istics. If particles are not spherically symmetric and do not form an ISM, then, in general:

● The 44×  extinction matrix does not degenerate to a direction- and polarization-
independent scalar extinction cross section.

● The extinction, scattering, and absorption cross sections, the single-scattering al-
bedo, and the asymmetry parameter depend on the direction and polarization
state of the incident beam.

● All four elements of the emission vector are nonzero and orientation-dependent.
● The scattering matrix ξ��F  does not have the simple block-diagonal structure of

Eq. (11.2.1): all 16 elements of the scattering matrix can be nonzero and depend
on the incidence direction and the orientation of the scattering plane rather than
only on the scattering angle.

● The phase matrix depends on the specific values of the azimuthal angles of
the incidence and scattering directions rather than on their difference, it can-
not be represented in the form of Eqs. (11.3.1) and (11.3.2), and it does not
obey the symmetry relations (11.3.9) and (11.3.11).
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Any of these effects can directly indicate the presence of oriented particles lacking
spherical symmetry. For example, measurements of interstellar polarization are used in
astrophysics to detect preferentially oriented dust grains causing different values of ex-
tinction for different polarization components of the transmitted starlight (Martin, 1978).
Similarly, the depolarization of radiowave signals propagating through the Earth’s at-
mosphere may indicate the presence of partially aligned nonspherical hydrometeors
(Oguchi, 1983).

If nonspherical particles are randomly oriented and form an ISM, then:

● The extinction matrix reduces to the scalar extinction cross section, Eq.
(11.4.8).

● All optical cross sections, the single-scattering albedo, and the asymmetry pa-
rameter become orientation- and polarization-independent.

● The emitted radiation becomes isotropic and unpolarized.
● The phase matrix depends only on the difference between the azimuthal an-

gles of the incidence and scattering directions rather than on their specific
values, has the structure specified by Eqs. (11.3.1) and (11.3.2),  and obeys the
symmetry relations (11.3.9) and (11.3.11).

● The scattering matrix becomes block-diagonal, Eq. (11.2.1), depends only on
the scattering angle, and possesses almost the same structure as the Lorenz–
Mie scattering matrix (11.8.1).

Despite the similarity of the matrices (11.2.1) and (11.8.1), the Lorenz–Mie iden-
tities ξξ ΘΘ ��≡�� )()( 1122 FF  and ξξ ΘΘ ��≡�� )()( 3344 FF  as well as Eqs. (11.8.2)
and (11.8.3) do not hold, in general, for nonspherical particles. As a consequence,
measurements of the linear backscattering depolarization ratio
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and the closely related circular backscattering depolarization ratio
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are, perhaps, the most reliable means of detecting particle nonsphericity (Mishchenko
and Hovenier, 1995). Besides the above qualitative distinctions, which unequivocally
distinguish randomly oriented nonspherical particles from spheres, there can be sig-
nificant quantitative differences in specific scattering patterns. They will be discussed
in some detail in Section 11.13.

11.10 Normalized scattering and phase matrices

It is convenient and customary in many types of application to use the so-called nor-
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malized scattering matrix
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the elements of which are dimensionless. Similarly, the normalized phase matrix can
be defined as
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The (1,1) element of the normalized scattering matrix, ),(1 Θa  is traditionally called
the phase function and, as follows from Eqs. (11.6.2) and (11.10.1), satisfies the nor-
malization condition:

.1)(sin d
2
1

1

  

0  
=ΘΘΘ

π
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Remember that we have already used the term “phase function” to name the quantity
p defined by Eq. (3.9.17). It can be easily seen from Eqs. (3.9.15), (3.9.17), (11.0.1),
and (11.10.1) that the differential scattering cross section Ωdd scaC  reduces to

,11 ξ��F  and so p reduces to ,1a  when unpolarized incident light propagates along the
positive z-axis and is scattered in the xz-half-plane with .0≥x  Equations (11.6.3)
and (11.10.1) yield

.cos)(sind
2
1cos 1

  

0  
ΘΘΘΘΘ

π

a=��     (11.10.4)

The normalized scattering matrix possesses many properties of the regular scat-
tering matrix, e.g.,

,01 ≥a   (11.10.5)

,4 ,3 ,2      ,|| 1 =≤ iaai   (11.10.6)
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Also,
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for rotationally symmetric particles and
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)()(      ),0()0( 1313 ππ aaaa −== (11.10.17)

for spherically symmetric particles. Similarly, for πϕϕ <−< incsca0  the normal-
ized phase matrix is given by
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(cf. Eq. (11.3.1)) and has the same symmetry properties as the regular phase matrix:
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11.11 Expansion in generalized spherical functions

A traditional way of specifying the elements of the normalized scattering matrix is to
tabulate their numerical values in a representative grid of scattering angles (e.g.,
Deirmendjian, 1969). However, a more mathematically appealing and practically effi-
cient way is to expand the scattering matrix elements in so-called generalized spheri-
cal functions )(cosΘs

mnP  or, equivalently, in Wigner d-functions mns
mnd −= i)(Θ

)(cosΘs
mnP×  (see Appendix F):
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(Siewert, 1981; de Haan et al., 1987). According to Appendix F, these expansions
always exist in the sense of either Eq. (F.3.5) or Eq. (F.6.6) provided that

<2
  

0  
)]([ sin d ΘΘΘ

π

ia ∞, ,4 ,3 ,2 ,1        =i         (11.11.7)

<2
  

0  
)]([ sin d ΘΘΘ

π

ib ∞, .2 ,1        =i           (11.11.8)

In view of the inequalities (11.10.6) and (11.10.7), it is sufficient to require that

<2
1

  

0  
)]([ sin d ΘΘΘ

π

a ∞.         (11.11.9)

There are no reasons to expect that the latter condition can be violated for real parti-
cles occurring in nature. According to Eqs. (F.1.8) and (F.1.10),

0)0()0( 022,2 ==−
ss dd       (11.11.10)
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and

.0)()( 0222 == ππ ss dd       (11.11.11)

Therefore, Eqs. (11.11.1), (11.11.2), (11.11.4), and (11.11.5) identically reproduce the
specific structure of the normalized scattering matrix for the exact forward and back-
ward directions as given by Eqs. (11.10.12) and (11.10.13).

The number of nonzero terms in the expansions (11.11.1)–(11.11.6) is in principle
infinite. In practice, however, the expansions are truncated at ,maxss =  the maxs  be-
ing chosen such that the corresponding finite sums differ from the respective scatter-
ing matrix elements on the entire interval ],0[ πΘ ∈  of scattering angles within the
requisite numerical accuracy. Since 0)( ≡Θs

mnd  for |),||,max(| nms <  the coeffi-
cients ,0

2α  ,1
2α  ,0

3α  ,1
3α  ,0

1β  ,1
1β  ,0

2β  and 1
2β  are not defined. However, it is often

convenient to formally equate them to zero:

0
2α  = 1

2α  = 0
3α  = 1

3α  = 0
1β  = 1

1β  = 0
2β  = 1

2β  = 0.             (11.11.12)

The angular behavior of several d-functions entering Eqs. (11.11.1)–(11.11.6) is
illustrated in Fig. F.1.1. Equations (F.1.8), (F.1.10), (11.10.12), and (11.10.13) yield
for the exact forward and exact backward directions:
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The properties of the generalized spherical functions and the Wigner d-functions
are summarized in Appendix F. For given m and n, either type of function with

|),||,max(| nms ≥  when multiplied by ,)( 21
2

1+s  forms a complete orthonormal set
of functions of ]1,1[cos +−∈Θ  (or ]).,0[ πΘ ∈  Therefore, using the orthogonality
relation (F.3.1), we obtain from Eqs. (11.11.1)–(11.11.6)
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(cf. Eq. (F.3.6)). These formulas suggest a simple, albeit not always the most elegant
and efficient, way to compute the expansion coefficients by evaluating the integrals
numerically using a suitable quadrature formula (de Rooij and van der Stap, 1984). Of
course, this procedure assumes the knowledge of the scattering matrix elements at the
quadrature division points.

Because the Wigner d-functions possess well-known and convenient mathematical
properties and can be efficiently computed by using a simple and numerically stable
recurrence relation, the expansions (11.11.1)–(11.11.6) offer substantial practical ad-
vantages. For example, if the expansion coefficients appearing in these expansions are
known, then the elements of the normalized scattering matrix can be calculated easily for
practically any number of scattering angles and with a minimal expenditure of computer
time. Hence instead of tabulating the elements of the scattering matrix for a large number
of scattering angles (cf. Deirmendjian, 1969) and resorting to interpolation in order to
find the scattering matrix at intermediate points, one can provide a complete and accurate
specification of the scattering matrix by tabulating a limited (and usually small) number
of numerically significant expansion coefficients. This also explains why the expansion
coefficients are especially convenient in averaging over particle states: instead of com-
puting ensemble-averaged scattering matrix elements, one can average a (much) smaller
number of expansion coefficients.

An additional advantage of expanding the scattering matrix elements in Wigner d-
functions is that the latter obey an addition theorem, Eq. (F.7.8), and thereby provide an
elegant analytical way of calculating the coefficients in a Fourier azimuthal decomposi-
tion of the normalized phase matrix (Kuščer and Ribarič, 1959; Domke, 1974; de Haan
et al., 1987). This Fourier decomposition is then used to handle the azimuthal depend-
ence of the solution of the VRTE efficiently (Section 12.7).

Another important advantage offered by the expansions (11.11.1)–(11.11.6) is that
using the (superposition) T-matrix method (Chapter 5 of MTL and Section 9.1), the ex-
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pansion coefficients for certain types of nonspherical particles can be calculated analyti-
cally without computing the scattering matrix itself.

The expansion coefficients obey the general inequalities

,4 ,3 ,2 ,1        ,12|| =+≤ iss
iα (11.11.25)

.2 ,1        ,
2

12|| =+< iss
iβ (11.11.26)

These and other useful inequalities were derived by van der Mee and Hovenier
(1990). Since, for each s, )(00 Θsd  is also a Legendre polynomial ),(cosΘsP  Eq.
(11.11.1) is the well-known expansion of the phase function in Legendre polynomials
(Chandrasekhar, 1950; Sobolev, 1975; van de Hulst, 1980). Equation (F.1.15) implies
that .1)(0

00 ≡Θd  Therefore, Eq. (11.11.19) and the normalization condition (11.10.3)
yield the identity

,10
1 ≡α (11.11.27)

while the orthogonality property of the d-functions and Eq. (11.10.4) result in the re-
lation

.cos 1
13

1 αΘ =�� (11.11.28)

To illustrate the dependence of the expansion coefficients s
iα  and s

iβ  on particle
physical characteristics, Fig. 11.11.1 depicts them as a function of s for two polydis-
perse models of spherical particles, each described by a gamma distribution of parti-
cle radii given by Eq. (5.3.15). For both models, the relative refractive index is

5.1=m  and the effective variance is .2.0eff =v  The effective size parameter
eff1eff rkx =  is equal to 5 for the first model and to 30 for the second model. Figure

11.11.2 visualizes the four independent elements of the normalized Lorenz–Mie scat-
tering matrix for both models. The computations have been performed using the Lo-
renz–Mie code described in Section 5.10 of MTL.

Figure 11.11.1 reveals the typical behavior of the expansion coefficients s
iα  with

increasing index s: they first grow in magnitude and then decay to absolute values
below a reasonable numerical threshold. The greater the size of particles relative to
the wavelength, the larger the maximum absolute value of the expansion coefficients
and the slower their decay. This trend is largely explained by the rapid growth of the
height of the forward-scattering peak in the elements )(1 Θa  and )(3 Θa  with increas-
ing size parameter (see Fig. 11.11.2 and Eqs. (11.11.13)–(11.11.15)). The || s

iβ  re-
main significantly smaller than the || s

iα  and exhibit more pronounced oscillations. The
former trait is obviously explained by the fact that the elements )(1 Θb  and )(2 Θb  van-
ish at 0=Θ  rather than having a strong peak typical of the elements )(1 Θa  and

).(3 Θa
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11.12 Circular-polarization representation

Equations (11.11.1)–(11.11.6) become more compact and their origin becomes more
transparent if one uses the circular-polarization representation of the Stokes vector
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Figure 11.11.1.  Expansion coefficients for two models of polydisperse spherical particles with
effective size parameters effx = 5 and 30 (see text).
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(Kuščer and Ribarič, 1959; Domke, 1974; Hovenier and van der Mee, 1983). We be-
gin by defining the circular components of a transverse electromagnetic wave as
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Using Eqs. (3.3.6) and (11.12.2), we find that the corresponding circular-polarization
amplitude scattering matrix C is expressed in terms of the regular amplitude scatter-
ing matrix as
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polydisperse spherical particles (see text).
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The usefulness of the circular electric vector components becomes clear from the
simple formulas
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and Eqs. (2.6.4) and (2.6.10). It is easy to verify using the first equality of Eq.
(11.12.3) and Eqs. (11.12.4) that the circular-polarization phase matrix is given by
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Alternatively, it can be found from Eq. (3.7.28).
Consider now scattering by an ISM. The normalized scattering and phase matrices

in the circular-polarization representation are defined by analogy with the corre-
sponding Stokes matrices:
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where ξϕθϕθ �� ),;,( incincscascaCPZ  is the average circular-polarization phase matrix.
From Eqs. (3.7.28), (11.10.1), (2.6.12), and (2.6.16) we have
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(the argument Θ  is omitted for the sake of brevity). Obviously, this matrix has sev-
eral symmetry properties:

),(~)(~)(~ CP
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),(~CP ΘppF real,  are  )(~CP
, ΘppF − (11.12.10)

.)](~[)(~ CP
0,2

CP
02

∗
−= ΘΘ FF (11.12.11)

An elegant and compact way to expand the elements CP~
pqF  is to use generalized

spherical functions :s
pqP
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which indicates the rationale for the specific choice of values for the p, q indices for
the circular-polarization phase matrix and the corresponding Stokes vector component
subscripts (cf. Eqs. (11.12.4)). Another justification for this choice of expansion
functions comes from the consideration of certain properties of the rotation group
(Domke, 1974). The expression for the expansion coefficients s

pqg  follows from Eqs.
(11.12.12) and (F.6.8):
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     (11.12.13)

Note that for )(cosΘs
pqP  no distinction is made between 0, =qp  and .0, −=qp

For the values of p and q used here, all functions )(cosΘs
pqP  are real-valued (see Eq.

(F.6.1)). Since 0)(cos ≡Θs
pqP  for |),||,max(| qps <  the corresponding expansion

coefficients s
pqg  in Eq. (11.12.12) are not defined. However, it is convenient to com-

plete the definition by equating them to zero, which is consistent with Eq. (11.11.12).
Using Eqs. (11.12.9)–(11.12.11), (11.12.13), and (F.6.2), we derive the following

symmetry relations:
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.)( 0,220
∗

−= ss gg (11.12.16)

Inserting Eq. (11.12.12) into Eq. (11.12.8) yields the expansions (11.11.1)–(11.11.6)
with expansion coefficients
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By analogy with Eq. (11.3.1) and using Eqs. (2.8.8) and (11.12.8), we find for
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where we have omitted the argument Θ  in the as and bs. As is the case with the nor-
malized Stokes phase matrix, the normalized circular-polarization phase matrix de-
pends on the difference between the azimuth angles of the scattering and incidence
directions rather than on their specific values. Applying the transformation rule
(3.7.28) to Eqs. (11.10.19)–(11.10.22) yields, after some algebra, the following sym-
metry relations:

),,;,(~ ),;,(~ incincscascaCPscaincincscaCP ϕθϕθϕθϕθ ZZ =−− (11.12.24)
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,),;,(~ ),;,(~ CPincincscascaCPCPincincscascaCP ∆Z∆Z ϕθϕθϕθπϕθπ =−−
     (11.12.26)

,)],;,(~[),;,(~ TincincscascaCPscascaincincCP ϕθϕθϕθπϕθπ ZZ =−−   (11.12.27)

where
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Equations (11.12.25) and (11.12.26) can also be written as follows:
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incincscascaCP ϕθϕθϕθπϕθπ qppq ZZ −−=−−   (11.12.30)

11.13 Illustrative examples

Mishchenko et al. (2000a) and MTL provide a detailed discussion of extinction, scat-
tering, and absorption properties of particles having diverse morphologies and com-
positions and encountered in various environments. Therefore, the limited purpose of
the several illustrative examples given below is to highlight the most typical traits of
the single-scattering patterns generated by small particles.

The bottom curve in Fig. 11.13.1 shows the extinction efficiency factor defined by
Eq. (11.6.6) versus size parameter x for monodisperse spheres with a relative refrac-
tive index .5.1=m  The curve exhibits a succession of major low-frequency maxima
and minima with superimposed high-frequency ripple consisting of sharp, irregularly
spaced extrema some of which are super-narrow spike-like features. The major
maxima and minima are called the “interference structure” since, as traditionally ex-
plained, they are the result of interference of light diffracted and transmitted by the
particle. Unlike the interference structure, the ripple is caused by the resonance be-
havior of coefficients na  and nb  appearing in the formulas of the Lorenz–Mie theory.
The interference structure and ripple are typical attributes of all scattering character-
istics of nonabsorbing monodisperse spheres.

The ripple structure rapidly weakens and then vanishes with increasing absorp-
tion, as the other curves in Fig. 11.13.1 demonstrate. Increasing Im  beyond 0.001
starts to affect and eventually eradicates the interference structure as well. However,
the first interference maximum at x ≈ 4 survives, albeit becomes significantly less
pronounced, even at .1.0I =m

A very similar smoothing effect on the interference and ripple structure is caused
by particle polydispersity. Indeed, as Fig. 11.13.2 illustrates, increasing the width of
the size distribution (see Fig. 11.13.3) first extinguishes the ripple and then eliminates
the interference structure in .extQ  It is interesting that as narrow a dispersion of sizes
as that corresponding to 01.0eff =v  completely washes the ripple structure out. The
first major maximum of the interference structure persists to much larger values of

,effv  but eventually fades away too.
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Plate 11.13.1 parallels Fig. 11.13.2 and shows the effect of increasing width of the
size distribution on the degree of linear polarization of scattered light for unpolarized
incident light,

.
)(
)(

)(
)()(

1

1
sca

sca

Θ
Θ

Θ
ΘΘ

a
b

I
QPQ −=−=

The case 01.0eff =v  demonstrates that even a very narrow size distribution is suffi-
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Figure 11.13.1.  The effect of increasing absorption on the interference and ripple structure of
the extinction efficiency factor for monodisperse spherical particles with the real part of the
relative refractive index .5.1R =m  The vertical axis scale applies to the curve with ,0I =m
the other curves being successively displaced upward by 2.
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cient to extinguish most of the interference and resonance effects. With increasing
effective variance, the maxima are smoothed out, the minima are filled in, and the
polarization becomes more neutral. All these effects of broadening the size distribu-
tion are easy to understand qualitatively in terms of taking weighted averages along
vertical lines of increasing length in the polarization diagram for monodisperse parti-
cles.

Figure 11.13.4 shows the extinction efficiency factor, the single-scattering albedo,
and the asymmetry parameter versus effective size parameter eff1eff rkx =  for four
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Figure 11.13.2.  The effect of increasing width of the size distribution on the interference and
ripple structure in extQ  for nonabsorbing spherical particles with the relative refractive index
1.5 and effective size parameters eff1eff rkx =  ranging from 0 to 30. The particle size
distributions used in these computations are depicted in Fig. 11.13.3. The vertical axis scale
applies to the curve with ,0eff =v  the other curves being successively displaced upward by 2.
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models of polydisperse spherical particles characterized by a moderately wide size
distribution. It is seen that for nonabsorbing wavelength-sized particles eff(x ∼ 5), the
extinction cross section can exceed the particle geometrical cross section by more
than a factor of 3. As the particle size becomes much larger, extQ  tends to the as-
ymptotic geometrical-optics value 2, with equal contributions from the rays striking
the particle and the light diffracted by the particle projection (Section 9.2). For nonab-
sorbing particles much smaller than the wavelength,

,1  4
10

scaext λ→
=

x
QQ ∝         (11.13.1)

as first demonstrated by Lord Rayleigh and hence called Rayleigh scattering. For ab-
sorbing particles, extinction in the Rayleigh limit is dominated by absorption and
varies as

 extQ ≈ .1

10
abs λ→x

Q ∝     (11.13.2)

The single-scattering albedo is identically equal to unity for the nonabsorbing parti-
cles but is significantly smaller than unity for the absorbing spheres and vanishes in
the Rayleigh limit in accordance with Eqs. (11.13.1) and (11.13.2). The �� Θcos  rap-
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Figure 11.13.3.  Gamma size distributions, Eq. (5.3.15), with ,0min =r =maxr ∞, 1eff =r  (in
arbitrary units of length) and =effv  0, 0.01, 0.05, 0.1, and 0.2. The size distributions are
normalized according to Eq. (5.3.8). The value =effv 0 corresponds to monodisperse particles.
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idly grows from zero to values exceeding 0.5 as effx  increases from 0 to about 2.
Then it remains positive, thereby indicating forward-scattering particles, and shows
relatively little dependence on the particle size parameter.

The phase function in the Rayleigh limit (the upper left panel in Fig. 11.13.5) is
nearly isotropic and is symmetric with respect to the scattering angle ,90°=Θ  thereby
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causing the asymmetry parameter to vanish:

.0    cos
0→

=��
x

Θ         (11.13.3)

The ratio )()( 11 ΘΘ ab−  (the lower panel in Fig. 11.13.5), is always positive, has the
classical bell-like shape, and reaches 100% at the scattering angle .90°=Θ

The elements of the normalized Stokes scattering matrix exhibit significant vari-
ability in the intermediate (so-called resonance) region of size parameters (1 � effx �

100), but eventually start to develop features that can be explained through the con-
cepts of geometrical optics applicable to particles much larger than the wavelength.
Specifically, the concentration of light near °= 0Θ  (Fig. 11.13.6) is caused by the
diffraction of light on the particle projection. The diffraction peak rapidly grows in
magnitude and becomes much narrower with increasing size parameter. The external
reflection (see the ray-tracing diagram, Fig. 9.2.1) does not generate any distinctive
feature, whereas the rays refracted twice cause a broad enhancement of the phase
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Figure 11.13.5.  Phase function )(1 Θa  and the ratios )()( 13 ΘΘ aa  and )()( 11 ΘΘ ab−  versus
scattering angle Θ  for a spherically symmetric particle in the Rayleigh limit.
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functions in the forward-scattering hemisphere.
The features at Θ ≈ 137° and 130° for  m = 1.33 (160° and 88° for m = 1.53) are

the primary and secondary rainbows generated by the rays undergoing one and two
internal reflections, respectively. The low-intensity zone (about °7  wide for m =
1.33 and °72  wide for m = 1.53) between the primary and secondary rainbows is
called the Alexander dark band. Here the phase functions are mostly determined by
the weak contribution from the externally reflected rays. The slight change of the
rainbow angle with wavelength caused by dispersion (change of the relative refractive
index with wavelength) gives rise to spectacular colorful rainbows often observed
during showers illuminated by the sun at an altitude lower than about .40°

The enhancement of intensity in the backscattering direction Θ( ≈ 180°) is called
the glory and can be seen from an airplane as a series of colored rings around the
shadow cast by the airplane on the cloud top. An obvious, but relatively insignificant
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Figure 11.13.6.  Phase function )(1 Θa  versus scattering angle Θ  for a gamma distribution of
homogeneous spheres with ,07.0eff =v  effx = 40, 160, and 600, and relative refractive indices

33.1R =m  and 1.53. The vertical axis scale applies to the curves with effx = 600, the other
curves being successively displaced upward by a factor of 100.
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contributor to the glory are central rays externally and internally reflected in the back-
scattering direction. Snell’s law predicts that for real relative refractive indices in the
range ,22 21 ≤≤ m  a noncentral incident ray may emerge at °= 180Θ  after just
one internal reflection. However, this mechanism does not explain the pronounced
glory generated by water droplets with )2( 33.1 21<=m  and .600eff =x  The
physical origin of the glory remains the subject of active research. In a recent paper
called Does the glory have a simple explanation? Nussenzveig (2002) concludes that
the glory is produced by near-peripheral incident light, optical resonances and van de
Hulst’s surface waves being the main contributors.

The ratio )()( 11 ΘΘ ab−  (Fig. 11.13.7) is small at small scattering angles because
of the predominance of unpolarized diffracted light (for unpolarized incident light).
Most of the light scattered into the forward hemisphere is due to twice refracted rays
and is negatively polarized, as follows from Fresnel’s formulas. Externally reflected
rays are strongly positively polarized at all scattering angles and cause the broad
positive polarization at Θ  � ,80°  including the Alexander dark band. The primary
and secondary rainbows cause pronounced peaks of positive polarization. It is inter-
esting that the secondary rainbow remains visible in polarization to smaller size pa-
rameters than in intensity.

The dependence of all scattering and absorption characteristics on particle micro-
physical properties can become much more complex if particles are nonspherical and
are partially or perfectly aligned. This is especially true of the interference structure
and ripple, which now strongly depend on the particle orientation with respect to the
incidence and scattering directions and on polarization of the incident light. However,
averaging over orientations reinforces the effect of averaging over sizes and eradi-
cates many resonance features, thereby making scattering patterns for randomly ori-
ented, polydisperse nonspherical particles even smoother than those for surface- or
volume-equivalent polydisperse spheres. In fact, it is not always easy to distinguish
spherical and randomly oriented nonspherical particles based on qualitative differ-
ences in their scattering patterns (Section 11.9).

However, there can be significant quantitative differences in specific scattering
patterns. As an example, Fig. 11.13.8 contrasts the elements of the normalized Stokes
scattering matrix for polydisperse spheres and surface-equivalent, randomly oriented
spheroids with a relative refractive index 1.53 + i0.008. The left-most top diagram of
this figure shows the corresponding phase functions and reveals the following five
distinct scattering-angle ranges:

nonsphere ≈ sphere from °= 0Θ  to Θ  ∼ ;2015 °−°
nonsphere > sphere   from Θ  ∼ °−° 2015  to Θ  ∼ ;35°
nonsphere < sphere     from Θ  ∼ °35  to  Θ  ∼ ;85°        (11.13.4)
nonsphere � sphere   from Θ  ∼ °85  to Θ  ∼ ;150°
nonsphere � sphere   from Θ  ∼ °150  to Θ  = .180°

Although the specific boundaries of these regions can be expected to shift with
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changing particle shape and relative refractive index, the enhanced side-scattering and
suppressed backscattering appear to be rather universal characteristics of nonspherical
particles.

The degree of linear polarization for unpolarized incident light, ,)()( 11 ΘΘ ab−
tends to be positive at scattering angles around °120  for the spheroids, but is negative at
most scattering angles for the spheres. Whereas 1)()( 12 ≡ΘΘ aa  for spherically sym-
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metric scatterers, the )()( 12 ΘΘ aa  curve for the spheroids significantly deviates from
unity and leads to strong backscattering depolarization (see Eq. (11.9.1)). Similarly,

)()( 13 ΘΘ aa )()( 14 ΘΘ aa≡  for spherically symmetric particles, whereas the
)()( 14 ΘΘ aa  for the spheroids tends to be greater than the )()( 13 ΘΘ aa  at most scat-

tering angles, especially in the backscattering direction. The ratios )()( 12 ΘΘ ab  for the
spheres and the spheroids also reveal significant quantitative differences at scattering
angles exceeding .60°

The corresponding optical cross sections, single-scattering albedos, and asymme-
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Figure 11.13.8.  Elements of the normalized Stokes scattering matrix for a gamma distribution
of spheres and surface-area-equivalent, randomly oriented oblate spheroids with ,10eff =x

,1.0eff =v  and .008.0i53.1 +=m  The ratio of the larger to the smaller spheroid axes is 2.
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try parameters are listed in Table 11.13.1. Clearly, the nonspherical/spherical differ-
ences in the integral scattering and absorption characteristics are not nearly as sig-
nificant as those in the scattering matrix elements, which appears to be another typical
trait of scattering by nonspherical particles.

Table 11.13.1.  Efficiency factors, single-scattering albedo, and
asymmetry parameter for a gamma distribution of spheres and
surface-area-equivalent, randomly oriented oblate spheroids
with ,10eff =x  ,1.0eff =v  and .008.0i53.1 +=m  The ratio
of the larger to the smaller spheroid axes is 2.

Particles extQ  scaQ absQ ϖ 〉〈 Θcos

Spheres 2.457 2.106 0.351 0.857 0.720
Spheroids 2.505 2.182 0.323 0.871 0.688
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Chapter 12

Radiative transfer in plane-parallel,
macroscopically isotropic and
mirror-symmetric scattering
media

Although the assumption of plane-parallel geometry made in Chapter 10 has greatly
simplified the theoretical analysis of the VRTE, the latter still remains too cumber-
some and laborious to find extensive practical applications. Therefore, in this chapter
we will introduce an additional simplifying restriction that makes the problem man-
ageable. Specifically, we will assume that the plane-parallel scattering medium is
macroscopically isotropic and mirror-symmetric, thereby making applicable the re-
sults of the preceding chapter. We remind the reader that an ISM is composed of ran-
domly oriented particles with a plane of symmetry and/or particles and their mirror
counterparts in random orientation.

12.1 The standard problem

In view of Eq. (11.4.8), the integro-differential VRTE (10.1.2) can now be re-written
in the form

),ˆ ,(~)ˆ ,ˆ ,( ˆd
)(

1)ˆ ,(~
d

)ˆ ,(~d  

4  ext
nnnnnn ′′′+−= ττ

τ
τ

τ
τ

π
IZII

C
u     (12.1.1)

where

)()(d)( ext0

  

  
zCznzz

z
′′′=

∞

τ     (12.1.2)
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is the so-called optical depth, which now replaces the geometrical depth z, and extC  is
the depth-dependent average extinction cross section.1 Unlike the geometrical depth z
and the particle depth ,ψ  the optical depth is dimensionless.

It is convenient to re-write Eq. (12.1.1) in the following form:

), ,(~
d

), ,(~d ϕτ
τ

ϕτ uuu II −=

    ),, ,(~),;, ;( dd
)(

1 1 

1  

2 

0  ext
ϕτϕϕτϕ

τ

π

′′′′′′+
+

−
uuuu

C
IZ

    (12.1.3)

where, as before, we use the notation

),, ,(~), ,(~ ϕθτϕτ II =u

).,;,;(),;, ;( ϕθϕθτϕϕτ ′′=′′ ZZ uu

Finally, the phase matrix can be replaced by the normalized phase matrix according to
Eq. (11.10.2), thereby yielding

                                                
1 As in Chapter 10, we omit the angular brackets used previously to denote averages over parti-
cle states.
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Figure 12.1.1.  The standard problem.
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where

)(
)()(

ext

sca

τ
ττϖ

C
C=     (12.1.5)

is the optical-depth-dependent single-scattering albedo. The standard problem is now
reformulated by supplementing Eq. (12.1.4) with the boundary conditions

,)(δ)(δ), ,0(~
000 II ϕϕµµϕµ −−=     (12.1.6)

,), ,(~ 0I =− ϕµT     (12.1.7)

where )( bzτ=T  is the optical thickness of the layer (Fig. 12.1.1).

12.2 The general problem

By analogy with Section 10.3, the boundary values specifying the general problem
read

),,(~), ,0(~
  ϕµϕµ ↓= II     (12.2.1)

),(~), ,(~
  ϕµϕµ −=− ↑II T     (12.2.2)

(see Fig. 12.2.1). The fact that the extinction matrix has now reduced to a direction-
independent scalar extinction cross section allows us to replace the matrix propaga-
tors (10.2.8) and (10.2.16) with simple scalar exponentials ])(exp[ 0 µττ −−  for

0ττ ≥  and ])(exp[ 0 µττ −−  for .0ττ <  As a consequence, the radiation field for
],0[ T∈τ  can be expressed in terms of the specific intensity vectors of the external

light as follows:
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),(~])(exp[), ,(~
  ϕµµτϕµτ −−−=− ↑II T
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The corresponding reflection and transmission matrices are defined by

),,;, ;0(),;,( ϕµϕµϕµϕµ ′′=′′ UR     (12.2.5)

),,;, ;(),;,( ϕµϕµϕµϕµ ′′=′′ TDT     (12.2.6)

),,;, ;(),;,( †† ϕµϕµϕµϕµ ′′=′′ TUR     (12.2.7)

),,;, ;0(),;,( †† ϕµϕµϕµϕµ ′′=′′ DT     (12.2.8)

whereas the solution of the standard problem takes the form

0000 )exp()(δ)(δ), ,(~ II µτϕϕµµϕµτ −−−=
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π
+     (12.2.9)
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π
ϕµτ =−               (12.2.10)
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Figure 12.2.1.  The general problem.
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   ,),;,(1
0000 IT ϕµϕµµ

π
+   (12.2.11)

.),;,(1), ,0(~
0000 IRI ϕµϕµµ

π
ϕµ =−   (12.2.12)

Analogously to the case for the phase matrix, the azimuthal symmetry of the me-
dium causes the matrices U, D, ,†U ,†D R, T, ,†R  and †T  to depend on the differ-
ence ϕϕ ′−  rather than on ϕ  and ϕ′  separately. In other words, if ,ϕ  ,ϕ′  ,1ϕ  and

1ϕ′  are such that 11 ϕϕϕϕ ′−=′−  then ),,;, ;(),;, ;( 11 ϕµϕµτϕµϕµτ ′′=′′ DD  and
analogously for the other matrices. This is equivalent to the statement that each of
these matrices has the property

),;,()∆,;∆,( ϕµϕµϕϕµϕϕµ ′′=+′′+ YY   (12.2.13)

for any ,ϕ  ,ϕ′  and .∆ϕ  Although this property of azimuthal rotational invariance
seems to be rather obvious, the more critical reader may appreciate the following
formal proof. Recall first Eqs. (10.4.21)–(10.4.24) which suggest that the reflection
and transmission matrices of optically thick layers do satisfy Eq. (12.2.13) because
they are linearly expressed in terms of the phase matrix. The azimuthal rotational in-
variance of the matrices U, D, ,†U ,†D R, T, ,†R  and †T  for an arbitrary layer then
follows by induction from the adding/doubling equations, the fact that all matrix
propagators reduce to azimuth-independent scalars, and the fact that if 44×  matrices

),;,(1 ϕµϕµ ′′Y  and ),;,(2 ϕµϕµ ′′Y  satisfy Eq. (12.2.13) then the matrix

),;,(),;,(dd),;,( 21

1  

0  

2  

0  
ϕµϕµϕµϕµµµϕϕµϕµ

π

′′′′′′′′′′′′′′′′=′′ YYY

  (12.2.14)

also possesses the property of azimuthal rotational invariance. Indeed, Eqs. (10.4.1)–
(10.4.4) can be solved by iteration using the first terms on the right-hand sides as an
initial approximation. Therefore, if the reflection and transmission matrices of each
layer satisfy Eq. (12.2.13) then the matrices U, D, ,†U  and †D  of the combined slab
also satisfy this equation. Finally, Eqs. (10.4.7)–(10.4.10) show that the reflection and
transmission matrices of the combined slab also satisfy Eq. (12.2.13).

12.3 Adding equations

The aim of this section is to show how the adding equations transform if one uses the
simplifying assumption of macroscopic isotropy and mirror symmetry. Let us con-
sider an arbitrary plane-parallel slab having an optical thickness T and divide it into
layers ],0[ τ  and ],[ Tτ  (see Fig. 12.3.1). The reader can easily verify that the adding
equations (10.4.1)–(10.4.4) and (10.4.7)–(10.4.10) now become
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Figure 12.3.1.  Illustration of the adding principle.
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Equations (10.4.11)–(10.4.18) describing the polarized radiation field at any optical
depth τ ′  inside the combined slab (see Fig. 12.3.2)  now take the form

),;, ;(),;, ;( 1 ϕµϕµτϕµϕµτ ′′′=′′′ UU

),;, ;(])(exp[ ϕµϕµτµττ ′′′−−+ U

),;,;(dd1 †
1

1  

0  

2  

0  
ϕµϕµτµµϕ

π

π

′′′′′′′′′′′+ D

  ),,;, ;( ϕµϕµτ ′′′′′′× U      (12.3.9)

),;, ;(),;, ;( 1 ϕµϕµτϕµϕµτ ′′′=′′′ DD

),;,;(dd1 †
1

1  

0  

2  

0  
ϕµϕµτµµϕ

π

π

′′′′′′′′′′′+ U

),,;, ;( ϕµϕµτ ′′′′′′× U    (12.3.10)

),;, ;(])(exp[),;, ;( †
1

† ϕµϕµτµτϕµϕµτ ′′′′−−=′′′ UU T

  ),;,;(dd1 †
1

1  

0  

2  

0  
ϕµϕµτµµϕ

π

π

′′′′′′′′′′′+ U

   ),,;, ;(† ϕµϕµτ ′′′′′′× D    (12.3.11)
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),;, ;(])(exp[),;, ;( †
1

† ϕµϕµτµτϕµϕµτ ′′′′−−=′′′ DD T

  ),;, ;(])(exp[ † ϕµϕµτµττ ′′′−−+ D

     ),;,;(dd1 †
1

1  

0  

2  

0  
ϕµϕµτµµϕ

π

π

′′′′′′′′′′′+ D

   ),;, ;(† ϕµϕµτ ′′′′′′× D    (12.3.12)

for ],0[ ττ ∈′  and

),;, ;()exp(),;, ;( 2 ϕµϕµττµτϕµϕµτ ′′−′′−=′′′ UU

),;,;(dd1
2

1  

0  

2  

0  
ϕµϕµττµµϕ

π

π

′′′′−′′′′′′′+ U

 ),,;, ;( ϕµϕµτ ′′′′′′× D    (12.3.13)

),;, ;()exp(),;, ;( 2 ϕµϕµττµτϕµϕµτ ′′−′′−=′′′ DD

),;, ;(])(exp[ ϕµϕµτµττ ′′−′−+ D

),;,;(dd1
2

1  

0  

2  

0  
ϕµϕµττµµϕ

π

π

′′′′−′′′′′′′+ D

  ),,;, ;( ϕµϕµτ ′′′′′′× D    (12.3.14)

),;, ;(),;, ;( †
2

† ϕµϕµττϕµϕµτ ′′−′=′′′ UU

  ),;, ;(])(exp[ † ϕµϕµτµττ ′′−′−+ U
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Figure 12.3.2.  Internal radiation field.
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  ),;,;(dd1
2

1  

0  

2  

0  
ϕµϕµττµµϕ

π

π

′′′′−′′′′′′′+ D

   ),,;, ;(† ϕµϕµτ ′′′′′′× U    (12.3.15)
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Figure 12.3.3.  Representation of a vertically inhomogeneous scattering slab by a stack of N
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),;, ;(),;, ;( †
2

† ϕµϕµττϕµϕµτ ′′−′=′′′ DD

  ),;,;(dd1
2

1  

0  

2  

0  
ϕµϕµττµµϕ

π

π

′′′′−′′′′′′′+ U

   ),;, ;(† ϕµϕµτ ′′′′′′× U    (12.3.16)

for ].,[ Tττ ∈′  The practical implementation of the adding scheme for a multi-layer
scattering slab is now illustrated by Figs. 12.3.3 and 12.3.4. Finally, the reflection and
transmission matrices of an infinitesimally thin layer, Fig. 12.3.4, are now given by

),,;,(~
4
∆),;,(∆ ϕµϕµ

µµ
ϖϕµϕµ ′′−

′
=′′ n

n
n

ZR T
T   (12.3.17)

),,;,(~
4
∆),;,(∆ ϕµϕµ

µµ
ϖϕµϕµ ′′

′
=′′ n

n
n

ZT T
T   (12.3.18)

),,;,(~
4
∆),;,(†

∆ ϕµϕµ
µµ

ϖϕµϕµ ′′−
′

=′′ n
n

n
ZR T

T   (12.3.19)

).,;,(~
4
∆),;,(†

∆ ϕµϕµ
µµ

ϖϕµϕµ ′′−−
′

=′′ n
n

n
ZT T

T   (12.3.20)

12.4 Invariant imbedding and Ambarzumian equations

It is also quite straightforward to rewrite the invariant imbedding equations and the
Ambarzumian equation for the special case of a macroscopically isotropic and mirror-
symmetric scattering slab. Specifically, Eqs. (10.5.11a)–(10.5.14a) now read

),;,(),;,( ϕµϕµ
µµ

µµϕµϕµ ′′
′

′+−=
∂

′′∂

↑

RR
T

  ),;,;0(~
4

ϕµϕµ
µµ

ϖ ′′−
′

+ Z

  ),;,(dd
4

1  

0  

2  

0  
ϕµϕµµϕ

µπ
ϖ π

′′′′′′′′
′

+ R

    ),;, ;0(~ ϕµϕµ ′′′′′′× Z  

  ),;,;0(~dd
4

1  

0  

2  

0  
ϕµϕµµϕ

πµ
ϖ π

′′′′−−′′′′+ Z

    ),;,( ϕµϕµ ′′′′′′× R

  µϕµϕ
π
ϖ ππ

′′′′′′′′′′+ dddd
4

1  

0  

2  

0  

1  

0  

2  

0  
2

 ),;,;0(~),;,( ϕµϕµϕµϕµ ′′′′′′−′′′′′′′′× ZR

 ),,;,( ϕµϕµ ′′′′′′′′× R      (12.4.1)
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),;,;0(~
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e),;,(1),;,( ϕµϕµ

µµ
ϖϕµϕµ
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′′∂ −

↑

ZTT T

T

  ),;,(dd
4
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0  
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ϕµϕµµϕ
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ϖ π

′′′′′′′′
′

+ T

    ),;, ;0( ϕµϕµ ′′′′′′× Z  
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4
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−
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4
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2

 ),;,;0(),;,( ϕµϕµϕµϕµ ′′′′′′−′′′′′′′′× ZT

 ),,;,( ϕµϕµ ′′′′′′′′× R      (12.4.2)
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4
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′′′′′′′′′′+ dddd
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   ),;,;0(~),;,( ϕµϕµϕµϕµ ′′′′′′−′′′′′′′′× ZT

   ),,;,(† ϕµϕµ ′′′′′′′′× T      (12.4.3)
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           ),;,;0(~ ϕµϕµ ′′−′′′′× Z

µϕµϕ
π
ϖ ππ

′′′′′′′′′′+ dddd
4

1  

0  

2  

0  

1  

0  

2  

0  
2

  ),;,;0(),;,( ϕµϕµϕµϕµ ′′′′′′−′′′′′′′′× ZR

  ),;,(† ϕµϕµ ′′′′′′′′× T      (12.4.4)

and are supplemented by the initial conditions

,),;,( 0 0R =′′
=Tϕµϕµ     (12.4.5)

,),;,( 0 0T =′′
=Tϕµϕµ     (12.4.6)

,),;,(
0

† 0R =′′
=T

ϕµϕµ     (12.4.7)

.),;,(
0

† 0T =′′
=T

ϕµϕµ     (12.4.8)

Similarly, the Ambarzumian nonlinear integral equation for the reflection matrix of a
semi-infinite homogeneous slab now becomes

),;,(~
4

),;,()( ϕµϕµϖϕµϕµµµ ′′−=′′′+ ZR

     ),;,(dd
4

1  

0  

2  

0  
ϕµϕµµϕ

π
ϖµ π

′′′′′′′′+ R

  ),;,(~ ϕµϕµ ′′′′′′× Z

  ),;,(~dd
4

1  

0  
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0  
ϕµϕµµϕ

π
µϖ π

′′′′−−′′′′′
+ Z

   ),;,( ϕµϕµ ′′′′′′× R

  µϕµϕ
π

µϖµ ππ

′′′′′′′′′′′
+ dddd

4

1  

0  

2  

0  

1  

0  
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0  
2

),;,(~),;,( ϕµϕµϕµϕµ ′′′′′′−′′′′′′′′× ZR

).,;,( ϕµϕµ ′′′′′′′′× R     (12.4.9)

12.5 Successive orders of scattering

It is often convenient to expand either the specific intensity column vector or the
44×  matrices U, D, ,†U ,†D R, T, ,†R  and †T  for a homogeneous slab in powers of

the single-scattering albedo. Indeed, the physical interpretation of such Newmann
series is very transparent: an nth term in the Newmann expansion of one of the above-
mentioned quantities represents the contribution of light that was scattered n times.
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Let us consider, for example, the reflection of light by a homogeneous slab and
express the corresponding reflection matrix as follows:

).,;,(),;,(
1

ϕµϕµϖϕµϕµ ′′=′′
=

n
n

N

n

RR     (12.5.1)

In the case of an optically semi-infinite homogeneous slab, the Ambarzumian’s equa-
tion (12.4.9) yields

),,;,(~
)(4

1),;,(1 ϕµϕµ
µµ

ϕµϕµ ′′−
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=′′ ZR     (12.5.2)
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µµπ
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µµπ
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′+

′
+

−
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 µϕµϕ
ππ

′′′′′′′′′′× dddd
1  

0  

2  

0  

1  
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0  

 ),;,(~),;,(1 ϕµϕµϕµϕµ ′′′′′′−′′′′′′′′× −′− ZR nn

  3      ),,;,( ≥′′′′′′′′× ′ nn ϕµϕµR     (12.5.4)

(cf. Gross, 1962). Note that the upper summation limit N in Eq. (12.5.1) is infinite in
general, but has to be a finite number in actual computer calculations. The practical
value of N is usually determined from the requirement that the contribution of the

th)1( +N  term be below a certain numerical threshold.
It is clear that the use of the recursion formula (12.5.4) can become rather onerous

for n � 1. However, the quantities ),;,( ϕµϕµ ′′nR  are independent of ϖ  and are
functions of only the phase matrix. Therefore, once they have been computed, Eq.
(12.5.1) can be used to find the reflection matrix for any value of the single-scattering
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albedo provided that the phase matrix remains the same.
Various ways to implement the order-of-scattering approach are discussed by

Hansen and Travis (1974), Hovenier et al. (2004), and Min and Duan (2004). For
optically thin slabs ),1( <T  the order-of-scattering expansion converges rather rap-
idly with increasing N and can be truncated after a few (or several) terms, thereby
yielding a viable alternative to the adding/doubling and invariant imbedding methods.
For cases in which the contribution of higher-order terms is significant (T  � 1, ϖ  ∼
1), the order-of-scattering approach becomes (much) less efficient than the other
techniques. However, there are several situations in which it is worthwhile to compute
separately the contributions of at least a few orders of scattering (Hansen and Travis,
1974):

● In a Fourier series expansion in azimuth of the specific intensity column
vector or the reflection and transmission matrices (see Section 12.7 below),
the high frequency terms arise from light scattered a small number of times.
Therefore, many Fourier terms can be computed accurately by including only
one or a few orders of scattering.

● In the adding method, a significant saving of computer time can be achieved
by computing two or three orders of scattering for the initial layer and taking
a significantly larger T∆  than that afforded by the first-order-scattering for-
mulas (12.3.17)–(12.3.20).

● Equation (12.5.1) and its analogues for other characteristics of the radiation
field show that for a homogeneous layer, the contribution of light scattered n
times with conservative scattering )1( =ϖ  yields the solution for all other
values of the single-scattering albedo upon multiplication by the factor .nϖ
This property of the order-of-scattering solution can be useful for computing
absorption line profiles provided that the phase matrix and the optical thick-
ness remain nearly constant within the wavelength interval of the spectral
line.

● The results for successive orders provide physical insight useful for under-
standing the process of multiple scattering.

12.6 Symmetry relations

12.6.1 Phase matrix

Using the notation introduced in Section 12.1, the four basic symmetry relations for
the phase matrix, Eqs. (11.10.19)–(11.10.22), can be re-written as follows:

),,;,;(~  ),;,;(~ ϕϕτϕϕτ ′′=−′′− uuuu ZZ      (12.6.1)

,),;,;(~  ),;,;(~
3434 ∆Z∆Z ϕϕτϕϕτ ′′=′−′− uuuu      (12.6.2)
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,),;,;(~  ),;,;(~
3434 ∆Z∆Z ϕϕτϕϕτ ′′=′′−− uuuu      (12.6.3)

.)],;,;(~[),;,;(~
3

T
3 ∆Z∆Z ϕϕτϕϕτ ′′=−′′− uuuu     (12.6.4)

Several more symmetry relations can be obtained by forming various combinations of
these formulas. Specifically, combining Eqs. (12.6.2), and (12.6.4) yields

,)],;,;(~[),;,;(~
4

T
4 ∆Z∆Z ϕϕτϕϕτ ′′=−−′−′− uuuu     (12.6.5)

where ].1,1,1,1[diag4 −=∆  Analogously,

),;,;(~),;,;(~ ϕϕτϕϕτ ′′=′−′− uuuu ZZ     (12.6.6)

(see Eqs. (12.6.1)–(12.6.3)),

4
T

4 )],;,;(~[),;,;(~ ∆Z∆Z ϕϕτϕϕτ ′′=′′ uuuu     (12.6.7)

(see Eqs. (12.6.3) and (12.6.4)), and

3
T

3 )],;,;(~[),;,;(~ ∆Z∆Z ϕϕτϕϕτ ′′=−′−′ uuuu     (12.6.8)

(see Eqs. (12.6.3) and (12.6.5)).

12.6.2 Reflection and transmission matrices

The reciprocity relations for the reflection and transmission matrices, Eqs. (10.7.1)–
(10.7.3), now take the form

,)],;,([),;,( 3
T

3 ∆R∆R ϕµϕµϕµϕµ ′′=′′     (12.6.9)

,)],;,([),;,( 3
T†

3
† ∆R∆R ϕµϕµϕµϕµ ′′=′′   (12.6.10)

.)],;,([),;,( 3
T

3
† ∆T∆T ϕµϕµϕµϕµ ′′=′′   (12.6.11)

Applying the derivation technique presented in Section 10.7 to the invariant imbed-
ding equations (12.4.1)–(12.4.4) and using the symmetry relation (12.6.2), we further
obtain

,),;,(),;,( 3434 ∆R∆R ϕµϕµϕµϕµ ′′=′−′−       (12.6.12)

,),;,(),;,( 3434 ∆T∆T ϕµϕµϕµϕµ ′′=′−′−       (12.6.13)

,),;,(),;,( 34
†

34
† ∆R∆R ϕµϕµϕµϕµ ′′=′−′−       (12.6.14)

,),;,(),;,( 34
†

34
† ∆T∆T ϕµϕµϕµϕµ ′′=′−′−       (12.6.15)

where we have taken into account that

),;, ,0(~),;,(d
2  

0  
ϕµϕµϕµϕµϕ

π

′′′′−′′′′−′′′′ ZR

),;, ,0(~),;,(d
2  

0  
ϕµϕµϕµϕµϕ

π

′′′′′′′′′′′′= ZR   (12.6.16)



Radiative transfer in plane-parallel isotropic and symmetric  media 317

and analogously for other integrals of the same type. Combining Eqs. (12.6.9)–
(12.6.15) yields three more symmetry relations:

,)],;,([),;,( 4
T

4 ∆R∆R ϕµϕµϕµϕµ ′′=−′−′       (12.6.17)

,)],;,([),;,( 4
T†

4
† ∆R∆R ϕµϕµϕµϕµ ′′=−′−′       (12.6.18)

.)],;,([),;,( 4
T

4
† ∆T∆T ϕµϕµϕµϕµ ′′=−′−′       (12.6.19)

If the scattering slab is homogeneous, then the only difference between the cases
of illumination from above and illumination from below is the sense in which the
azimuth angle is reckoned. Hence

),,;,(),;,(† ϕµϕµϕµϕµ ′−′−=′′ RR       (12.6.20)

).,;,(),;,(† ϕµϕµϕµϕµ ′−′−=′′ TT       (12.6.21)

Thus, for a homogeneous layer, †R  and †T  never need to be computed if R and T
are known. By combining Eqs. (12.6.9)–(12.6.15) and (12.6.17)–(12.6.21), one can
derive numerous additional symmetry relations; they are listed in Section 4.5 of Ho-
venier et al. (2004).

12.6.3 Matrices describing the internal field

By iterating the adding equations (12.3.1)–(12.3.4) (with the first term on the right-
hand side of each equation serving as the initial approximation) and then applying the
symmetry relations (12.6.12)–(12.6.15), it is straightforward to derive the symmetry
relations for the matrices U, D, ,†U  and :†D

,),;,;(),;,;( 3434 ∆U∆U ϕµϕµτϕµϕµτ ′′=′−′−       (12.6.22)

,),;,;(),;,;( 3434 ∆D∆D ϕµϕµτϕµϕµτ ′′=′−′−       (12.6.23)

,),;,;(),;,;( 34
†

34
† ∆U∆U ϕµϕµτϕµϕµτ ′′=′−′−       (12.6.24)

34
†

34
† ),;,;(),;,;( ∆D∆D ϕµϕµτϕµϕµτ ′′=′−′−       (12.6.25)

(Hovenier et al., 2004).
If the scattering slab is homogeneous, then the radiation field at an optical depth

τ  in response to illumination from above must be the essentially same as that at an
optical depth τ−T  in response to illumination from below, the only difference being
the sense in which the azimuth angle is reckoned. Hence

,),;,;(),;,;( 3434
† ∆U∆U ϕµϕµτϕµϕµτ ′−′−=′′−T   (12.6.26)

.),;,;(),;,;( 3434
† ∆D∆D ϕµϕµτϕµϕµτ ′−′−=′′−T   (12.6.27)

12.6.4 Perpendicular directions

Propagation directions perpendicular to the upper and lower boundaries of a plane-
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parallel scattering slab, both for the incident light )1( 0 =µ  and for the scattered light
),1( ±=u  are rather special because they do not provide an implicit way to specify

the meridional plane and azimuth and, thus, the plane of reference for defining the
Stokes parameters. The singularity of the perpendicular directions gives rise to many
additional symmetry relations for the phase matrix, the reflection and transmission
matrices, and the matrices describing the internal radiation. These relations are stud-
ied in detail in Hovenier and de Haan (1985) and Hovenier et al. (2004) and are im-
portant for practical purposes because perpendicular propagation directions are often
encountered in actual observations and measurements.

12.7 Fourier decomposition

The fact that the normalized phase matrix depends on the difference of azimuth an-
gles of the scattering and incidence directions allows an efficient treatment of the
azimuthal dependence of the specific intensity vector by means of a Fourier-series
decomposition of the VRTE. Since the corresponding formulas are much simpler in
the circular-polarization representation, we will discuss the Fourier expansion of only
the circular-polarization specific intensity column vector. The extension of this for-
malism to the standard Stokes representation is described in detail in Hovenier et al.
(2004).

12.7.1 Fourier decomposition of the VRTE

Recalling Eqs. (2.6.10), (2.6.12), (2.6.14), and (2.6.16), we easily derive from Eq.
(12.1.4) the VRTE for the circular-polarization specific intensity column vector:

), ,(~
d

), ,(~d CP
CP

ϕτ
τ

ϕτ uuu II −=

    ),, ,(~),;, ;(~ dd
4

)( CPCP
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where

),, ,(~), ,(~CP ϕτϕτ uu IAI =     (12.7.2)

.),;, ;(~),;, ;(~ 1CP −′′=′′ AZAZ ϕϕτϕϕτ uuuu     (12.7.3)

Let us first assume that πϕϕ <′−<0  and expand CP~I  and CP~Z  in the following
Fourier series:
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Substituting Eqs. (12.7.4) and (12.7.5) in Eq. (12.7.1) and taking into account that
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where mm ′δ  is the Kronecker delta defined by Eq. (F.1.9), yields
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Thus each Fourier component of the circular-polarization specific intensity column
vector is a function of only one angular variable and satisfies a separate simplified
VRTE. Each term in the Fourier series (12.7.4) can be treated independently, thereby
allowing a significant reduction in computer storage requirements. The matrices U, D,

,†U ,†D R, T, ,†R  and †T  can also be expanded in Fourier series, thereby resulting
in separate adding, invariant-imbedding, and order-of-scattering equations for each
Fourier index m. An additional advantage of the Fourier decomposition is that the
numerical solution of these equations becomes much faster with increasing m.

12.7.2 Fourier components of the phase matrix

Perhaps the greatest advantage of the Fourier decomposition of the VRTE is that the
Fourier components of the phase matrix can be computed very efficiently using sim-
ple analytical expressions (Kuščer and Ribarič, 1959). Let us first re-write Eq.
(11.12.23) as follows:

,2,0,0,2,       )],(iexp[)(~),;, ;(~
12

CPCP −−=+−=′′ qpqpFuuZ pqpq σσΘϕϕτ

 (12.7.8)

where the angles ,Θ ,1σ  and 2σ  are shown in Fig. 12.7.1 (cf. Fig. 11.3.1(a)). Direct
comparison with Fig. F.7.1 and the use of Eqs. (F.6.1)–(F.6.3) allows us to reformu-
late the addition theorem, Eq. (F.7.8),  in terms of the generalized spherical functions:
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Recalling now Eq. (11.12.12), we derive from Eq. (12.7.8)
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The final result follows from the comparison of Eqs. (12.7.5) and (12.7.10);
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This remarkably simple and compact formula affords a very efficient numerical pro-
cedure for computing the Fourier components of the circular-polarization phase ma-
trix. Although Eqs. (12.7.5) and (12.7.11) were derived assuming that ϕϕ ′−<0

,π<  the reader can easily verify that they exactly reproduce the symmetry relation
(11.12.29),

),,;, ;(~),;, ;(~ CP
,

CP ϕϕτϕϕτ ′′=′−′− −− uuZuuZ qppq   (12.7.12)

and are, therefore, valid for any ϕ  and .ϕ′
From Eqs. (12.7.11), (F.6.2), (F.6.3), and (11.12.14), one can easily derive the

following symmetry relations:

1σ

2σ

y

x

z

Θ ϕ′(u,   )′

ϕ(u,   )

Figure 12.7.1.  Illustration of Eq. (12.7.8).
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),, ;(~), ;(~ CP,CP, uuuu mm ′=′−− − ττ ZZ   (12.7.13)

,)], ;(~[), ;(~ TCP,CP, uuuu mm ′=−′− − ττ ZZ   (12.7.14)
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These, in turn, give rise to symmetry relations for the Fourier components of the re-
flection and transmission matrices as well as for the matrices describing the internal
radiation field; they are listed in Domke and Yanovitskij (1986).

12.8 Scalar approximation

Equation (12.1.4) can be further simplified by neglecting polarization and so replacing
the specific intensity vector by its first element (i.e., the specific intensity) and the nor-
malized phase matrix by its (1, 1) element (i.e., the phase function):
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where

)]cos()1()1([arccos 212212 ϕϕΘ ′−′−−+′= uuuu     (12.8.2)

is the scattering angle (see Eqs. (11.3.4) and (11.10.18)). Although ignoring the vector
nature of light and replacing the exact VRTE by its approximate scalar counterpart has
no rigorous physical justification, this simplification is widely used when the medium is
illuminated by unpolarized light and only the specific intensity of multiply scattered light
needs to be computed. The main reason for doing that is a great saving of computer re-
sources. We will discuss the accuracy of the scalar approximation in Section 13.1.

The reader may find it a useful exercise to derive the following formulas:
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where the expansion coefficients )(1 τα s  are given by Eq. (11.12.17) and )(uPm
s  are

associated Legendre functions given by Eq. (F.5.2).

12.9 Notes and further reading

Classical texts on the scalar and vector theories of radiative transfer in plane-parallel
ISMs are those by Chandrasekhar (1950), Kourganoff (1952), Davison (1958), So-
bolev (1975), and van de Hulst (1980). Among more recent monographs are those by
Minin (1988), Sushkevich et al. (1990), Yanovitskij (1997), and Hovenier et al.
(2004).

Abstract mathematical aspects of the vector and scalar theories of radiative trans-
fer in ISMs have been extensively studied by Vladimirov (1961), Case and Zweifel
(1967), Maslennikov (1969, 1989), Williams (1971), van der Mee (1981), Kaper et al.
(1982), Ershov and Shikhov (1985), Germogenova (1986), and Greenberg et al.
(1987). Among many other issues, these publications address the problem of exis-
tence and uniqueness of solution of the RTE.

The adding/doubling method remains the most elegant, easy-to-implement, and
efficient exact technique to solve numerically the scalar or the vector RTE for plane-
parallel ISMs. Comprehensive descriptions of this technique and specific implemen-
tation issues can be found in Hansen and Travis (1974), de Haan et al. (1987),
Stammes et al. (1989), and Hovenier et al. (2004). Useful discussions are also con-
tained in Wiscombe (1976) and Takashima (1985).

Adams and Kattawar (1970) solved the scalar counterparts of the invariant imbed-
ding equations (12.4.1) and (12.4.2) using the standard Runge-Kutta method. Sato et
al. (1977) solved the scalar version of Eq. (12.4.1) by applying a more efficient nu-
merical technique based on a special predictor–corrector scheme. They showed that
for a slab with continuously varying optical properties, using this technique is more
efficient than modeling the slab by a stack of a large number of homogeneous layers
and applying the adding/doubling method. Mishchenko (1990b) extended their tech-
nique to the full vector case.

Efficient iterative solutions of the scalar version of the Ambarzumian equation
(12.4.9) have been developed by Dlugach and Yanovitskij (1974) and Mishchenko et
al. (1999b). The extension to the full vector case has been described by de Rooij
(1985) and Mishchenko (1996). The corresponding computer codes are by far the
fastest and most accurate means of calculating the (polarized) reflectivity of a semi-
infinite homogeneous slab. The computer code described in Mishchenko et al.
(1999b) is publicly available at http://www.giss.nasa.gov/~crmim/brf.

The monograph edited by Lenoble (1985) provides a comprehensive review of
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exact numerical solution techniques for the scalar and the full vector RTE in the case
of plane-parallel ISMs. Among more recent publications we note those on the spheri-
cal harmonics solution (Garcia and Siewert, 1986), the discrete ordinate method
(Stamnes et al., 1988; Nakajima and King, 1992; Schulz et al., 1999; Schulz and
Stamnes, 2000; Siewert, 2000; Rozanov and Kokhanovsky, 2006), and the so-called
FN method (Garcia and Siewert, 1989).

Benchmark numbers with a guaranteed number of correct decimals have always
been instrumental in checking the accuracy of existing computer codes or in the de-
velopment and testing of new software. Extensive tabular material can be found in the
books by van de Hulst (1980) and Lenoble (1985) as well as in the numerous publi-
cations referenced therein. Accurate numbers pertaining to multiple scattering of po-
larized light by polydisperse models of spherical and nonspherical particles have been
tabulated in Garcia and Siewert (1986, 1989), Mishchenko (1990b, 1991b), Wauben
and Hovenier (1992), and Siewert (2000).

Special effects arise when the scattering medium has a complex macroscopic
morphology (e.g., Diner and Martonchik, 1984; Martonchik and Diner, 1985; Evans,
1993; Cairns et al., 2000; Liou, 2002; Marshak and Davis, 2005) or when the incident
light is neither a plane electromagnetic wave nor a uniform quasi-monochromatic
parallel beam of light of infinite lateral extent (e.g., Mueller and Crosbie, 1997 and
references therein). Although the validity of the RTE in many such situations has
never been established, the RTT has been widely used to address specific practical
problems. Not surprisingly, most applications have been based on the inefficient yet
flexible and virtually universal Monte Carlo method. This technique was introduced a
long time ago (e.g., Plass and Kattawar, 1968; Marchuk et al., 1980) and remains very
popular and often indispensable (e.g., Bruscaglioni et al., 1993; Ambirajan and Look,
1997; Bartel and Hielscher, 2000; Hopcraft et al., 2000; Ishimoto and Masuda, 2002;
Barker et al., 2003; Jaillon and Saint-Jalmes, 2003; Vaillon et al., 2004; Postylyakov,
2004; and references therein).
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Chapter 13

Illustrative applications of radiative transfer theory

There have been so many applications of the RTT in various areas of science and
technology that listing even a small fraction of them would take too much space and
would hardly be instructive. Therefore, in this chapter we will describe several se-
lected illustrative examples which demonstrate the main qualitative and quantitative
effects of multiple scattering and are expected to be of interest to a broad range of
customers of the RTE.

13.1 Accuracy of the scalar approximation

We already mentioned in Section 12.8 that although the scalar approximation has no
specific physical justification, it has been widely used in situations when the incident
light is unpolarized (i.e., 0Q = 0U = 0V = 0) and only the specific intensity of multi-
ply scattered light needs to be computed. Comparison of Eqs. (12.3.17)–(12.3.20) and
Eq. (11.3.1) shows that the scalar approximation becomes exact in the limit ,0→T
i.e., when the first-order-scattering approximation is applicable. However, the process
of multiple scattering engages all the other elements of the phase matrix and may re-
sult in significant differences between exact vector and approximate scalar computa-
tions of radiative transfer.

Numerical errors in the specific intensity of the reflected light resulting from the
neglect of polarization were examined by Hansen (1971a) on the basis of accurate
adding/doubling calculations of multiple scattering. He concluded that in most cases
the errors of the scalar approximation should be less than or of the order of 1% for
light reflected by a cloud of spherical particles with sizes of the order of or larger than
the wavelength of light. On the other hand, it has been known since the pioneering
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work by Chandrasekhar (1950) that the errors can be much greater in the case of a
semi-infinite atmosphere with pure Rayleigh scattering.

The aim of this section is to present a systematic survey of the errors induced by
the neglect of polarization in radiance calculations for various types of scattering. We
begin by considering the classical case of a homogeneous Rayleigh-scattering atmos-
phere (without and with depolarization) overlying a Lambertian surface with albedo
ranging from zero to one (Mishchenko et al., 1994). Then we consider multiple scat-
tering by homogeneous slabs composed of spherical and randomly oriented non-
spherical particles with sizes ranging from essentially zero (Rayleigh scatterers) to
several times the incident wavelength.

13.1.1 Rayleigh-scattering slabs

The Rayleigh single-scattering law appears both in the RTE for a medium composed
of discrete, macroscopic, widely separated particles with sizes much smaller than the
wavelength (Section 11.13) and in the RTE derived for a continuous medium with
random fluctuations of the refractive index (Papanicolaou and Burridge, 1975).
Therefore, the results of this subsection will be applicable to both situations.

In order to take into account the potential anisotropy of molecules forming a con-
tinuous random medium, the normalized Stokes scattering matrix for a purely gaseous
medium is usually parameterized in the following form:
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where
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and δ  is the so-called depolarization factor (Hansen and Travis, 1974). For pure
Rayleigh scattering, the depolarization factor vanishes, whereas for most real gases it
substantially deviates from zero. For example, δ  is close to 0.03 for air and 0.09 for
CO2. The scattering matrix elements for the case of pure Rayleigh scattering are visu-
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alized in Fig. 11.13.5.
Let us consider a plane-parallel Rayleigh-scattering slab illuminated from above

by an unpolarized parallel beam of light. The symmetries of multiple scattering in
plane-parallel ISMs (Subsection 12.6.2) allow us, without loss of generality, to reduce
the number of free parameters by fixing the azimuth angle of the incident beam at
zero and to reduce by half the range of azimuth angles of the scattering direction.
Thus the direction of incidence is specified by a couplet }0,{ 00 =ϕµ  and that of the
reflected light by a couplet ,},{ ϕµ−  with ],1,0[0 ∈µ  ],1,0[∈µ  and ,0[ °∈ϕ

].180°
Throughout this section, we will supply rigorously calculated “vector” quantities

by the superscript “v” and approximate “scalar” quantities by the superscript “s”. To
quantify the errors in the reflected specific intensity resulting from the use of the sca-
lar approximation, we will use several characteristics. The most general of them is the
percent error defined as
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Here, T  is the optical thickness of the scattering slab,
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and
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s )0,;,;(1),,0(~ IRI µϕµµ

π
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are the vector and scalar specific intensities of the reflected light, respectively (see
Eq. (12.2.12)), ),,;,;( 00 ϕµϕµTR  called the reflection coefficient, is the quantity
replacing the reflection matrix ),;,;( 00 ϕµϕµTR  in the framework of the scalar ap-
proximation, and 0I  is the intensity of the incident parallel beam.

The degree to which the scalar approximation underestimates the reflected spe-
cific intensity for given ,T ,µ  and 0µ  is characterized by the local underestimation
defined by
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=     (13.1.7)

Note that for some particular values of µ  and ,0µ  the local underestimation may be
negative, thereby implying that the scalar approximation overestimates the specific
intensity for all ].180,0[ °°∈ϕ  Analogously, the local overestimation is defined as
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so that a positive local overestimation for some µ  and 0µ  implies that the scalar
approximation underestimates the specific intensity for all ].180,0[ °°∈ϕ  The
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maximum underestimation and the maximum overestimation are given by
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The azimuth angles at which the local underestimation and the local overestimation
are reached are denoted by ),,( 0u µµϕ T  and ),,,( 0o µµϕ T  respectively, while the
corresponding phase angles are denoted by ),,( 0u µµα T  and ).,,( 0o µµα T  The
phase angle is a quantity widely used in planetary astrophysics and defined as the
angle between the reflection direction, },,{ ϕµ−  and the direction opposite to the
incidence direction, .},{ 0 πµ−

In both scalar and vector calculations of light reflection by finite atmospheres, we
solved numerically the invariant imbedding equation (12.4.1) using the predictor–
corrector scheme described in Sato et al. (1977) and Mishchenko (1990b). In
particular, the reflection coefficient and the reflection matrix were Fourier-
decomposed in azimuth, and the invariant imbedding equations for each Fourier mode
were converted into a system of ordinary differential equations by replacing the
remaining integrals-µ on the interval [0, 1] with 30-point Gaussian quadrature sums
(see Section 10.4). The right-hand side of Eq. (13.1.4) was then evaluated at the
respective Gaussian values of µ  and 0µ  and at 61 equidistant azimuth angles ϕ =
0°, ,3° …, ,177°  and .180°

To model approximately more complex situations when a gaseous slab is bounded
from below by a particulate surface such as a snow or a soil surface, the initial condi-
tion (12.4.5) is replaced by the initial condition
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The above corresponds to an imaginary semi-infinite particulate medium reflecting
light according to the isotropic so-called Lambert law.

In order to keep the discussion to a reasonable size, we will display only the most
representative numerical results that illustrate our basic conclusions. Figures 13.1.1–
13.1.6 depict the maximum underestimation )(max

u Tε  and the maximum overestima-
tion )(max

o Tε  for different values of the single-scattering albedo ,ϖ  the depolariza-
tion factor ,δ  and the Lambertian albedo .LA  These plots can be used in practice to
decide whether one may use the scalar approximation or must invoke the rigorous
VRTE.

It is seen that the vector–scalar differences decrease with increasing depolarization
factor and/or increasing surface albedo. For optically thin layers T( � 1), the differ-
ences always decrease with decreasing single-scattering albedo. To explain this trait,
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let us expand the “vector” and “scalar” reflected intensities in the Newmann order-of-
scattering series following the approach outlined in Section 12.5:
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Figure 13.1.1.  Maximum overestimation )(max
o Tε  (in %, solid curves)  and maximum

underestimation )(max
u Tε  (in %, dotted curves) versus optical thickness T  for ,0=δ

,0L =A  and ,1=ϖ  0.99, 0.9, 0.8, 0.5, and 0.1.
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where ),,0(~ v ϕµ−nI  and ),,0(~s ϕµ−nI  are independent of .ϖ  In the limit  ,0→T
we may keep only the contributions of the first and second orders of scattering and
rewrite Eq. (13.1.4) as follows:
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Figure 13.1.2.  As in Fig. 13.1.1, but for .086.0=δ
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where we have taken into account that .~~ v
1

s
1 II ≡  It is then easy to see that Eq.

(13.1.14) explains indeed the dependence-ϖ of the percent error for T � 1.
For optically thick atmospheres T( � 1), the vector–scalar differences first in-

crease as the single-scattering albedo decreases from 1 to about 0.8, but then decrease
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Figure 13.1.3.  As in Fig. 13.1.1, but for .031.0=δ
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with further decrease of  .ϖ  With →T ∞, all the curves tend to the corresponding
asymptotic limits which are independent of the surface albedo and depend only on the
single-scattering albedo and depolarization factor. For single-scattering albedos equal
or close to one (conservative or nearly conservative scattering) and small surface al-
bedos, the curves have a characteristic maximum at T ≈ 1 which disappears with
increasing absorption and/or increasing surface albedo. Both errors displayed in Figs.
13.1.1–13.1.6 have roughly the same order of magnitude.
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Figure 13.1.4.  As in Fig. 13.1.3, but for .1.0L =A
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Figures 13.1.7 and 13.1.8 illustrate the angular distribution of the vector–scalar
differences for ,1=T  ,031.0=δ  ,1=ϖ  and .0L =A  Note, however, that the
contour plots displayed are rather typical and, in conjunction with Figs. 13.1.1–13.1.6,
give a general idea of what can be expected for other values of the optical thickness,
single-scattering albedo, depolarization factor, and surface albedo. Moreover, we
have found that, independently of the parameter values, the local underestimation is
always reached in the azimuth plane ,180°  i.e.,
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Figure 13.1.5.  As in Fig. 13.1.3, but for .4.0L =A
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.180),,( 0u °≡µµϕ T    (13.1.15)

 Note that the small step size in azimuth angle in our calculations of ),,( 0u µµϕ T
made the identity (13.1.15) numerically very accurate. Therefore, the contour plot of

),,( 0u µµα T  shown in panel (a) of Plate 13.1.1 is exactly the same for any ,T  ,δ
,ϖ  and .LA  Also, owing to the identity (13.1.15), the contour plot of the percent er-

ror ),,,( 0 ϕµµε T  shown in Fig. 13.1.8(a) is at the same time the contour plot of the
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Figure 13.1.6.  As in Fig. 13.1.3, but for .1L =A
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local underestimation ).,,( 0u µµε T
The symmetry relations (12.6.9) and (12.6.12) imply that the )1,1(  element of the

reflection matrix has the following symmetry property:

).0,;,;()0,;,;( 011011 µϕµµϕµ TT RR =   (13.1.16)

The scalar reflection coefficient possesses the same symmetry property:

).0,;,;()0,;,;( 00 µϕµµϕµ TT RR =   (13.1.17)

Equations (13.1.16) and (13.1.17) explain why all panels of Figs. 13.1.7 and 13.1.8
are symmetric with respect to the diagonal .0µµ =

One sees from Fig. 13.1.7 and panel (a) of Fig. 13.1.8 that the vector–scalar dif-
ferences are somewhat larger in the azimuth planes °= 0ϕ  and ,180°=ϕ  although
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they are rather significant in other azimuth planes as well. As was noted above, the
local underestimation is always reached at  .180°=ϕ  On the other hand, for a given

0µ  the azimuth plane of the local overestimation rotates from °0  for µ  equal or
close to one towards °90  (or, equivalently, )270°  with 0→µ  (see panel (c) of
Plate 13.1.1). This trend is illustrated schematically in Fig. 13.1.9.

The most intriguing result of our calculations is that the local overestimation
reaches its maximum negative values at phase angles equal or close to °90  for all 0µ
(see panel (b) of Plate 13.1.1), whereas the local underestimation is maximal at phase
angles equal or close to °0  for almost all 0µ  (see panel (a) of Plate 13.1.1). This re-
markable trait, which is invariant for all ,T  ,δ  ,ϖ  and ,LA  may help to explain why
the vector–scalar differences are so large in the case of Rayleigh scattering. We have
already stated that for unpolarized incident light and any directions of incidence and
reflection, the contribution of light scattered only once to the reflected specific inten-
sity is exactly the same in both vector and scalar formulations and is proportional to

),(1 απ −a  where )(1 Θa  is the )1,1(  element of the normalized Stokes scattering
matrix, Θ   is the scattering angle given by Eq. (12.8.2), and Θπα −=  is the phase
angle. On the other hand, the light scattered in the atmosphere many times can be
expected to become largely unpolarized (see Section 13.3). Therefore, it is reasonable
to assume that it is light scattered a small number of times, but more than once, which
carries the greatest differences between the approximate “scalar” and the rigorous
“vector” intensity. Thus, our task is to explain why these differences are maximal at
phase angles equal or close to °0  and .90°

In this explanation, we must take into account the following three factors which
become significant when one considers an elementary Rayleigh scattering event with
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respect to the scattering plane rather than with respect to the meridional planes of the
incidence and scattering directions:

● Two pronounced features of the Rayleigh scattering matrix are strong polari-
zation at scattering angles near °90  (i.e., )90()90( 11 °°− ab � 100%) and the
nearly isotropic phase function with strong side scattering (see Fig. 11.13.5).

● Polarization of light directly affects the scattered intensity only through the
second Stokes parameter, Q, and the element 1b  of the normalized scattering
matrix. The effect is maximal when Q has the largest possible absolute value
(i.e., when ||Q  is close or equal to )I  and, in the case of Rayleigh scattering,
when the scattering angle is close to °90  (see Eq. (13.1.1)).

● Unlike the intensity, the Stokes parameter Q changes not only due to light
scattering, but also due to rotations of the reference plane. The maximum
possible absolute change of Q due to a rotation of the reference plane occurs
when the angle of rotation is °±90  and Q changes its sign while not changing
its absolute value (see Eq. (2.8.4)).

Thus, we can expect that low-order (and primarily second-order) light-scattering
paths involving right scattering angles and right angles of rotation of the scattering
plane will carry the greatest vector–scalar differences. Because the Rayleigh phase
function is nearly isotropic, the contribution of such scattering paths to the reflected
specific intensity will be rather significant, thus potentially explaining large vector–
scalar differences in the case of Rayleigh scattering.

Two such second-order light-scattering paths are shown in Fig. 13.1.10. The scat-
tering path in panel (a) involves two scattering events with ,90°=Θ  but does not
involve rotations of the scattering plane so that the resulting phase angle is equal to
zero. The scattering path shown in panel (b) involves not only two scattering events

°0

°270

°180

Incident

.beam

Figure 13.1.9.  Rotation of the azimuth plane at which the local overestimation is reached. The
incidence direction lies in the azimuth plane .00 °=ϕ  The dashed curve visualizes the rotation
of the azimuth plane of local overestimation as µ  decreases from 1 to 0. ),,( 0o µµϕ T  is equal
to zero for µ  greater than some critical value and then rotates toward °270  (or, equivalently,
toward )90°  as µ  approaches zero.
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with ,90°=Θ  but also the right-angle rotation of the scattering plane so that the re-
sulting phase angle is equal to .90°  In the scalar approximation, the contribution of
these two paths to the reflected specific intensity is the same and, in the absence of
depolarization, is proportional to .169)]90([ 2

1 =°a  In the exact vector formulation,
the contribution of the scattering path in panel (a) to the reflected specific intensity is
proportional to the )1,1(  element of the matrix ),90(~)90(~ °° FF  which is equal to

,1618  whereas the contribution of the scattering path in panel (b) is proportional to
the )1,1(  element of the matrix ),90(~)90()90(~ °°−° FLF  which is equal to zero. Thus,
in the first case (zero phase angle), the scalar approximation significantly underesti-
mates the specific intensity, whereas in the second case °90(  phase angle), it equally
significantly overestimates the specific intensity, which is in full agreement with the
results displayed in panels (a) and (b) of Plate 13.1.1.

The correctness of this theoretical explanation is corroborated by the results
shown in Fig. 13.1.11. These data were calculated for a semi-infinite Rayleigh slab
with 1=ϖ  and 0=δ  by solving numerically the vector and scalar versions of the
Ambarzumian nonlinear integral equation (12.4.9) using the iterative procedures de-
scribed in Mishchenko (1996) and Mishchenko et al. (1999b). It is clearly seen that,
in agreement with our theoretical analysis, the vector–scalar differences in the sec-
ond-order-scattering contribution are much greater than those in the total specific in-
tensity, and the errors are maximal at phase angles 0° and 90°.

Plate 13.1.2 demonstrates that the errors of the scalar approximation in diffuse
transmission are quite comparable to those in reflection. The specific angular loca-
tions of maximal transmission errors can be explained easily by considering second-
order scattering paths involving two scattering events with °= 90Θ  and the resulting
phase angles close to 90° and .180°

13.1.2 Polydisperse spherical particles and spheroids

As we have already pointed out, the results of the previous subsection apply equally
to continuous slabs with random fluctuations of the refractive index and to plane-

⊗ 

(a) (b)

Figure 13.1.10.  Two second-order light-scattering paths involving 90° scattering angles. The
direction of propagation denoted by a crossed circle is into the paper. The path shown in panel
(b) does whereas the path shown in panel (a) does not involve the right-angle rotation of the
scattering plane.
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parallel discrete random media composed of very small, widely separated particles.
Consider now what happens when the size of the discrete particles increases and ex-
ceeds the Rayleigh threshold. To determine the upper limit of the vector–scalar dif-
ferences in the reflected specific intensity, we will consider only nonabsorbing parti-
cles with 0I =m  and 1=ϖ  and assume that .0L =A

Figures 13.1.12 and 13.1.13 are analogous to Figs. 13.1.1–13.1.6 but show the re-
sults for polydisperse spheres distributed over sizes according to the gamma law
(5.3.15) with 0min =r  and =maxr ∞. The effective variance of the size distribution is
fixed at 0.1, while the effective size parameter eff1eff rkx =  varies from 0.01 to 20.
The relative refractive index is 1.33 and represents water droplets at visible wave-
lengths. Figure 13.1.14 depicts the corresponding phase functions and ratios .11 ab−
The single-scattering computations were performed using the public-domain Lorenz–
Mie code posted at http://www.giss.nasa.gov/~crmim.
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Comparison of Fig. 13.1.14 with Fig. 11.13.5 shows that water droplets with
01.0eff =x  are still Rayleigh scatterers, which makes the upper left panel of Fig.

13.1.12 virtually indistinguishable from the upper left panel of Fig. 13.1.1. However,
the particles with effx � 2 are already well outside the Rayleigh domain (see the
dashed curves in the two middle panels of Fig. 13.1.14). In the interval of effective
size parameters from 0 to about 1.5, the behavior of the maximum overestimation,

log10T log10T

xeff = 0.5xeff = 0.01

xeff = 0.8 xeff = 1

xeff = 1.2 xeff = 1.5

−2 −1 0 1 2
0 

2 

4 

6 

8 

10 

12 

14 

−2 −1 0 1 2
0 

2 

4 

6 

8 

10 

12 

14 

−2 −1 0 1 2
0 

2 

4 

6 

8 

10 

12 

14 

−2 −1 0 1 2
0 

2 

4 

6 

8 

10 

12 

14 

−2 −1 0 1 2
0 

2 

4 

6 

8 

10 

12 

14 

−2 −1 0 1 2
0 

2 

4 

6 

8 

10 

12 

14 

Figure 13.1.12.  Maximum overestimation )(max
o Tε  (in percent, solid curves)  and maximum

underestimation )(max
u Tε  (in percent, dotted curves) versus optical thickness T  for

polydisperse spheres with effective size parameters ranging from 0.01 to 1.5.
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),(max
o Tε  and the maximum underestimation, ),(max

u Tε  is quite different (Fig.
13.1.12). While the )(max

o Tε  decreases monotonically with increasing ,effx  the
)(max

u Tε  first increases, reaches its maximum values at effx � 1, and only then starts
to decline. In fact, the maximum )(max

u Tε  value for 1eff =x  is indicative of vector–
scalar differences in the reflected specific intensity even exceeding those for pure
Rayleigh scattering (cf. the solid and dotted curves in the upper left panel of Fig.
13.1.1).

The interval 1 � effx � 3 is a transition zone where the vector–scalar differences
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Figure 13.1.13.  As in Fig. 13.1.12, but for effective size parameters ranging from 2 to 20.
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rapidly decrease to values below 1% (Figs. 13.1.12 and 13.1.13). At larger size pa-
rameters, the differences always remain smaller than 1%, thereby indicating that the
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Figure 13.1.14.  Phase functions )(1 Θa  and ratios )()( 11 ΘΘ ab−  versus scattering angle Θ
for polydisperse spheres with effective size parameters ranging from 0.01 to 20.
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scalar approximation provides results accurate enough for most practical applications.
This result may also imply that large vector–scalar differences are only typical of
scatterers exhibiting Rayleigh-like ratios )()( 11 ΘΘ ab−  (see Fig. 13.1.14).

To explain the intriguing behavior of the maximum underestimation at small size
parameters, let us recall Eq. (13.1.14) and Fig. 13.1.10 and analyze the consequences
of the results shown in the top two panels of Fig. 13.1.14. It is seen from the latter that
as the effective size parameter increases from 0.01 to 1, there is essentially no change
in the ratio 11 ab−  and a very little change in the side-scattering phase function

).90(1 °a  However, there is a significant decrease in the backscattering phase function
).180(1 °a  This implies that:

● The contributions of the two second-order-scattering paths shown in Fig.
13.1.10 to the reflected specific intensity should be expected to remain ap-
proximately constant.

● The first-order-scattering contribution to the reflected specific intensity in
situations corresponding to a 90° phase angle should also be expected to re-
main approximately constant.

● The first-order-scattering contribution to the reflected specific intensity in
situations corresponding to a 0° phase angle should be expected to substan-
tially decrease.

Since the local overestimation is maximal at phase angles close to 90°, it should be
expected to remain almost the same, as Fig. 13.1.12 demonstrates indeed. However,
the significant decrease of the first-order-scattering contribution in Eq. (13.1.14)
should cause an increase in the percent error at phase angles close to 0° and, thus, an
increase in the local underestimation. This explains the behavior of the dotted curves
in the upper four panels of Fig. 13.1.12.

To analyze how the vector–scalar differences in the reflected specific intensity can
be affected by particle nonsphericity, we present, in Figs. 13.1.15 and 13.1.16, the
results computed for polydisperse, randomly oriented oblate spheroids with the re-
fractive index 1.33 and with the ratio of the larger to the smaller axis equal to 2. The
size of a spheroid is specified in terms of the radius of the sphere having the same
surface area. To save computer time, we used the power law size distribution (5.3.14)
with effective variance fixed at 0.1. The single-scattering computations for the sphe-
roids were performed with the public-domain T-matrix code posted at http://www.
giss.nasa.gov/~crmim.

Comparison of Figs. 13.1.14 and 13.1.17 shows that the Rayleigh domain extends
to somewhat larger effective size parameters for the spheroids than for the surface-
equivalent spheres, which is a well-known trait of single scattering by nonspherical
particles (cf. Mishchenko and Travis, 1994b and references therein). Accordingly, the
vector–scalar differences for the spheroids (Figs. 13.1.15 and 13.1.16) peak at effx ≈
1.2 rather than at effx ≈ 1 and become insignificant at effx ≈ 5 rather than at effx ≈
3. These effects of nonsphericity appear to be rather minor.
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However, the situation can be completely different for nonspherical particles with
extreme aspect ratios since in that case the Rayleigh domain can persist to signifi-
cantly greater size parameters (Zakharova and Mishchenko, 2000, 2001). This is il-
lustrated in Fig. 13.1.18 which shows the phase function and the ratio 11 ab−  for
randomly oriented, monodisperse oblate spheroids with the ratio of the larger to the
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Figure 13.1.15.  Maximum overestimation )(max
o Tε  (in percent, solid curves)  and maximum

underestimation )(max
u Tε  (in percent, dotted curves) versus optical thickness T  for

polydisperse, randomly oriented oblate spheroids with effective size parameters ranging from
0.01 to 1.4.
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smaller axis equal to 20. The refractive index is 1.31, which is a value typical of water
ice at visible wavelengths. Figure 13.1.19 shows that the corresponding vector–scalar
differences in the reflected specific intensity remain significant even for equal-
surface-area-sphere size parameters as large as 12 and perhaps even larger. Unfortu-
nately, the limitations of the T-matrix code used in the single-scattering computations
did not allow us to determine the threshold size-parameter value above which the
vector–scalar differences for these plate-like particles decrease to values below 1%.
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Figure 13.1.16.  As in Fig. 13.1.15, but for effective size parameters ranging from 2 to 20.
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Figure 13.1.17.  Phase functions )(1 Θa  and ratios )()( 11 ΘΘ ab−  versus scattering angle Θ
for polydisperse, randomly oriented oblate spheroids with effective size parameters ranging
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Another class of particles possessing similar single-scattering properties are clus-
ters composed of Rayleigh-sized monomers (West, 1991; Liu and Mishchenko,
2005). When such a cluster has an overall size comparable to or greater than the inci-
dent wavelength, its phase function develops a pronounced forward-scattering peak
similar to those shown in the left-hand panel of Fig. 13.1.18, whereas the angular pro-
file of the ratio 11 ab−  is similar to those shown on the right-hand panel of Fig.
13.1.18 and still closely resembles that of Rayleigh scattering. Therefore, by analogy
with Fig. 13.1.19, one should expect large vector–scalar differences in the reflected
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Figure 13.1.18.  Phase functions )(1 Θa  and ratios )()( 11 ΘΘ ab−  versus scattering angle Θ
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oriented oblate ice spheroids with an aspect ratio 20 and surface-equivalent-sphere size
parameters 6 and 12.
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specific intensity for cluster size parameters significantly exceeding the correspond-
ing threshold value for the surface- or volume-equivalent sphere.

13.2 Directional reflectance and spherical and plane
albedos

In this section we will analyze how the various parameters of a scattering slab and the
process of multiple scattering affect the angular distribution of the reflected specific
intensity and its integral characteristics.

Figure 13.2.1 shows the phase function and the ratios ,13 aa  ,11 ab−  and 12 ab
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Figure 13.2.1.  Phase function and ratios ,13 aa ,11 ab−  and 12 ab  for a gamma size
distribution of spherical particles with an effective radius =effr µm,05.1  an effective variance

,07.0eff =v  and a relative refractive index m = 1.44. The incident wavelength is =1λ 550 nm.
The dotted curve depicts the phase function for pure Rayleigh scattering (i.e., without
depolarization).
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for a gamma distribution of spherical particles given by Eq. (5.3.15) with 0min =r
and =maxr ∞. The effective radius and the effective variance of the size distribution
are µm05.1eff =r  and ,07.0eff =v  respectively, the particle relative refractive index
is m = 1.44, and the wavelength of the incident light is =1λ  550 nm. These particle
parameters characterize the sulfuric acid aerosols forming the main cloud in Venus’
atmosphere (Hansen and Hovenier, 1974). Note that owing to 0I =m  these particles
are nonabsorbing (i.e., ).1=ϖ

Let us consider a homogeneous slab composed of such polydisperse spherical
particles and assume that it is illuminated by an unpolarized parallel beam of light
incident perpendicularly to the upper boundary of the slab. The intensity of the inci-
dent beam is .mW 2

0
−= πI  Owing to the azimuthal symmetry of the illumination–

reflection geometry, the reflected specific intensity given by

),1;,;(), ,0(~
011 ϕϕµϕµ TRI =−   )srmW( 12 −−       (13.2.1)

(see Eq. (12.2.12)) is independent of the azimuth angles of the incidence and reflec-
tion directions, 0ϕ  and ,ϕ  and depends only on the polar angle of the reflection di-
rection, .θ  Figure 13.2.2 shows the reflected specific intensity versus θ−°180  for
five optical thickness values increasing from 0.01 to 100. Note that the angle

θ−°180  is equal to the scattering angle for the first-order scattering in the slab.
The comparison of the bottom curve in Fig. 13.2.2 and the solid curve in the upper

left diagram of Fig. 13.2.1 reveals that the angular distribution of the specific intensity
reflected by an optically thin layer closely follows that of single scattering. This is
consistent with  Eq. (12.3.17) which is convenient to rewrite here in the form

).,;,(~
4
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00 ϕµϕµ
µµ

ϖϕµϕµ −=
→

ZR TT
T

    (13.2.2)

In particular, such phase-function features as the glory centered at Θ  = 180° and the
primary rainbow centered at Θ ∼ 163° clearly show up in the reflected light. As the
optical thickness grows from 0.01 to 100, the specific intensity increases by three
orders of magnitude, the characteristic phase-function features become less pro-
nounced, and the angular profile of the reflected specific intensity becomes very
smooth.

All these effects are easy to understand qualitatively. Indeed, consider three scat-
tering slabs with optical thicknesses ,321 TTT <<  as shown in Fig. 13.2.3. Scat-
tering path 1 contributes to the specific intensity reflected by all three slabs. Scatter-
ing path 2 contributes to the specific intensity reflected by layers 2 and 3, but not by
layer 1. Finally, scattering path 3 contributes only to the specific intensity reflected by
layer 3. Thus, increasing optical thickness affords more scattering paths contributing
to the reflected light, which explains the increase of the reflected specific intensity in
Fig. 13.2.2.

However, the scattering paths reaching large optical depths, such as scattering
paths 2 and 3 in Fig. 13.2.3, are longer than those controlling the reflectivity of thin
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layers, such as path 1, and involve many more scattering events. The waves following
long scattering paths “forget” the original incidence direction and are more likely to
contribute equally to all reflection directions, thereby creating a more isotropic distri-
bution of the reflected specific intensity than that typical of optically thin slabs. The
latter is dominated by the first-order-scattering contribution and preserves pronounced
single-scattering features such as the glory and the rainbow.

It is instructive to visualize the overall increase of the reflected specific intensity
with increasing optical thickness by plotting the so-called spherical albedo defined by
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as a function of T. The term “spherical albedo” comes from planetary astrophysics
where SA  represents the ratio of the electromagnetic energy reflected by the whole
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Figure 13.2.2.  Angular distribution of the reflected specific intensity (in )srmW 12 −−  for a
homogeneous slab composed of polydisperse spherical particles with an effective radius =effr

µm,05.1  an effective variance ,07.0eff =v  and a relative refractive index m = 1.44.  The
wavelength of the incident light is =1λ  550 nm. The slab optical thickness increases from T  =
0.01 to T  = 100. Unpolarized external beam is incident perpendicularly to the upper boundary
of the slab, and its intensity is I0 π=  Wm–2.
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planet covered with a uniform cloud layer to the total (unpolarized) solar energy fal-
ling on the planet (Sobolev, 1975). The solid curve in the upper left panel of Fig.
13.2.4 depicts SA  versus T for a slab composed of the micron-sized sulfuric-acid
aerosols. Taking into account that the T scale in Fig. 13.2.4 is logarithmic, one can
clearly identify the following three regimes:

● A nearly linear growth of SA  on the interval 0 � T � 1, consistent with Eq.
(13.2.2).

● A nearly logarithmic growth of SA  on the interval 1 � T � 20.
● The regime of slow saturation at T  > 20.

It is also seen that

.1)(lim
1

S =
=∞→ ϖ

T
T

A     (13.2.4)

The above limit is an obvious manifestation of the energy conservation law: all light
incident from above on a semi-infinite nonabsorbing scattering slab must eventually
exit the slab through its only boundary.

The existence of the slow saturation regime for a slab composed of nonabsorbing
particles is easy to understand. Indeed, the aerosol phase function, Fig. 13.2.1, has a
pronounced forward-scattering peak, which implies that after the first scattering much
of the incident light is still directed inside the slab. It then takes many scattering
events before the light is redirected towards the upper boundary of the slab. Some of
the multiple-scattering paths are so long and penetrate so deeply that they can still be
terminated at the lower boundary of the slab even for very large T and cause the
spherical albedo to be smaller than one. Therefore, it takes exceedingly large optical
thicknesses to avoid the termination of the few extremely long scattering paths and
thereby to prevent the loss of a few percent of the incident energy through the lower
boundary of the slab.

The dotted curve in the same panel was computed for conservative Rayleigh

3
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Figure 13.2.3.  Various scattering paths contributing to the specific intensity of reflected light.
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scattering and shows spherical albedo values always exceeding those for optical-
thickness-equivalent slabs composed of the micron-sized spheres. The overestimation
is especially large at small optical thicknesses, where it exceeds a factor of two. The
obvious reason for this overestimation is that the Rayleigh phase function, shown by
the dotted curve in the upper left panel of Fig. 13.2.1, is nearly isotropic, lacks a for-
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Figure 13.2.4.  Solid curves depict the spherical albedo (in percent) of homogeneous slabs
composed of polydisperse spherical particles. Dotted curves show the results for Rayleigh-
scattering slabs.
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ward-scattering peak, and has significantly larger side- and back-scattering values
than the aerosol phase function. This means, in particular, that half of the single-
scattered light is already directed towards the upper boundary of the slab, and the re-
maining half is distributed almost isotropically over the lower hemisphere of propa-
gation directions. As a consequence, low-order scattering paths, which are less likely
to get terminated at the lower boundary of the slab, provide a significantly stronger
contribution to the reflected light than in the case of forward-scattering particles.

The presence of a lower boundary is not the only cause of termination of multiple-
scattering paths. Another cause is absorption by gas molecules or particles. In the case
of particles, absorption is caused by a nonzero imaginary part of the relative refractive
index and results in single-scattering albedo values smaller than one. Although a non-
zero Im  can also modify the elements of the normalized Stokes scattering matrix and,
thus, the elements of the normalized phase matrix, it is instructive to examine the
“pure” effect of absorption on the process of multiple scattering by simply varying the
single-scattering albedo and keeping the phase matrix fixed. In particular, this ap-
proach will allow us to use the order-of-scattering terminology introduced in Section
12.5.

The corresponding numerical results for the micron-sized aerosols and for the
pure Rayleigh scattering are also shown in Fig. 13.2.4. Not surprisingly, decreasing
ϖ  leads to progressively reduced spherical albedo values. This effect is much more
pronounced at larger optical thicknesses where it causes an early saturation of SA  at
values progressively smaller than one. To explain this result, let us recall that ac-
cording to the order-of-scattering expansion (13.1.12) the contribution of an nth-order
scattering path to the reflected specific intensity is proportional to the nth power of
the single-scattering albedo. Therefore, although optically thick slabs can afford very
long scattering paths, these paths get terminated simply because the factor nϖ  be-
comes negligibly small. It is in fact remarkable that as small a deviation of the single-
scattering albedo from the value one as 0.0001 (see the upper right panel of Fig.
13.2.4) already causes the loss of several percent of the incident energy in a slab with
infinite optical thickness. The effect of absorption on spherical albedo is noticeably
weaker for Rayleigh-scattering slabs, which can be explained by a larger contribution
of low-order scattering paths to the reflected specific intensity and the fact that these
paths are less affected by absorption.

As we have concluded above, one of the dominant effects of multiple scattering is
to smear specific details of the single-scattering phase function and yield an increas-
ingly uniform angular distribution of the reflected specific intensity. However, there
are cases in which phase function features are so strong that they cannot be washed
off completely even by multiple scattering in a semi-infinite nonabsorbing slab. As an
example, Fig. 13.2.5 shows the phase functions computed for three ice particle mod-
els commonly used to represent cirrus cloud and snow crystals. Model 1 particles
have highly irregular, random-fractal shapes introduced by Macke et al. (1996).
Model 2 particles are homogeneous ice spheres. Model 3 particles are regular hex-
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agonal ice crystals with a length-to-diameter ratio of 2. The nonspherical model 1 and
3 particles are randomly oriented in three-dimensional space. For all three models we
assumed the same power law distribution of projected-area-equivalent-sphere radii,
Eq. (5.3.14), with an effective radius 50 µm and an effective variance 0.2. The wave-
length of the incident light is =1λ  650 nm and the corresponding relative refractive
index is m = 1.311. The phase functions were computed using the ray tracing tech-
nique coupled with the Kirchhoff approximation (Mishchenko and Macke, 1998) for
models 1 and 3 and the Lorenz–Mie theory for model 2. As Fig. 13.2.5 shows, the
three phase functions exhibit large differences exceeding an order of magnitude at
some scattering angles. As discussed in Mishchenko et al. (1996), the model 1 and 3
particles may represent limiting cases of highly distorted and pristine ice crystals,
respectively.

Plate 13.2.1 shows the reflected specific intensities for three homogeneous semi-
infinite slabs composed of the model 1, 2, and 3 particles, while Plate 13.2.2 depicts
the ratios 2/1, 3/1, and 3/2 of the reflected specific intensities for the respective mod-
els. Although the spherical albedo is equal to one for all three slabs owing to Im = 0,
it is clearly seen from Plates 13.2.1 and 13.2.2 that particle shape can indeed have a
profound effect on directional reflectance even for semi-infinite particulate slabs.
Specific intensity differences between the different models are moderate at nearly
normal incidence 0(µ = 0.9), but increase significantly with decreasing 0µ  and can
cause intensity ratios smaller than 0.2 or greater than 3 at grazing reflection directions
corresponding to small values of .µ  The latter trend is explained by increasing rela-
tive contribution of the first-order scattering to the reflection matrix, as follows from
Eq. (12.4.9) (see Hovenier and Stam, 2006 for a comprehensive discussion), and the
large phase-function differences seen in Fig. 13.2.5.

Hexagonal ice crystals (model 3) produce the most structured radiance field
dominated by the backscattering peak and the primary Θ( ∼ 22°) and secondary
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Figure 13.2.5.  Phase functions for three ice-particle models.
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Θ( ∼ 46°) halos in the corresponding phase function (cf. the thin solid curve in Fig.
13.2.5 and the two lower panels in the right-most column of Plate 13.2.1). These fea-
tures clearly show up in the 3/1 and 3/2 intensity ratios as well (Plate 13.2.2). The
spherical ice particles produce a noticeable enhancement of reflected specific inten-
sity caused by the primary rainbow. This feature is particularly evident in the 2/1 ra-
tio. The radiance field produced by the featureless phase function of irregular ice
crystals (model 1) is by far the least structured (left-most column of Plate 13.2.1).
These results illustrate the importance of accurate treatment of single-scattering phase
functions for realistic cirrus cloud and snow particle models in various remote-
sensing and atmospheric radiation applications.

A widespread practice in many applied science and engineering disciplines is to
replace the actual phase function by an asymmetry-parameter-equivalent so-called
Henyey–Greenstein (HG) phase function given by

,
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1)( 232
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gg

g

+−
−=

Θ
ΘP     (13.2.5)

where ��≡ Θcosg  is the asymmetry parameter (e.g., Sobolev, 1975; Tuchin, 2002).
Although not a solution of the Maxwell equations, this “unphysical” phase function
has several attractive properties:

● It is given by a simple analytical expression and is specified fully by only one
model parameter, .g

● It is always normalized according to Eq. (11.10.3).
● It is defined in the entire theoretical range of asymmetry-parameter values

11 ≤≤− g  and can, therefore, be used to model forward-scattering, isotropi-
cally scattering, and backward-scattering particles.

● It has a forward-scattering peak, for ,0>g  reminiscent of the diffraction
peak typical of wavelength-sized and larger particles.

● The Legendre expansion coefficients appearing in Eq. (11.11.1) are given by
the following simple formula:

.)12(1
ss s g+=α     (13.2.6)

Figure 13.2.6 compares Lorenz–Mie phase functions computed for two models of
polydisperse spherical particles with their equivalent-cos �� Θ HG counterparts. For
both models we assumed the gamma size distribution (5.3.15) with an effective radius

effr = a = 10 µm and an effective variance effv = b = 0.1. The model 1 and 2 values of
the relative refractive index were 1.55 + i0.001 and 1.55 + i0.004, respectively,
whereas the incident wavelength was fixed at 0.63 µm. The corresponding values of
the asymmetry parameter were 0.838 and 0.901.

Plate 13.2.3 shows the angular distribution of the reflected specific intensity for a
semi-infinite homogeneous slab composed of model 1 particles as well as for its HG
counterpart. Two obvious features of the reflected specific intensity distributions
shown in the left-hand column are the backscattering enhancement caused by the pri-
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mary glory in the Lorenz–Mie phase function (gray solid curve in Fig. 13.2.6) and the
strong near-forward scattering for the cases of grazing and near-grazing incidence

0(µ  equal or close to zero) caused by the diffraction peak. The reflectance patterns
for the asymmetry-parameter-equivalent HG phase function lack the first feature,
which is explained by the absence of the backscattering phase function peak similar to
the glory. The right-hand column in Plate 13.2.3 shows that errors in the reflected
specific intensity caused by the use of the approximate HG phase function can be very
large and can, in fact, exceed a factor of 20 at backscattering geometries and a factor
of 3 at near-forward-scattering geometries. These errors can be unequivocally attrib-
uted to the large phase-function differences. Thus, Plate 13.2.3 makes a strong case
against using the HG phase function in directional reflectance computations even for
semi-infinite slabs.

The upper panel of Fig. 13.2.7 depicts the so-called plane albedo given by
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as a function of 0µ  for two semi-infinite homogeneous slabs composed of the model
1 and 2 particles, respectively. In general, the plane albedo characterizes situations
when a slab is illuminated by an unpolarized parallel beam of light incident from
above and is defined as the ratio of the radiant energy reflected by the slab per unit
area of the upper boundary per unit time to the incident energy per unit area of the
upper boundary per unit time (Sobolev, 1975). Comparison of Eqs. (13.2.3) and
(13.2.7) reveals a close connection between the spherical and plane albedos. Specifi-
cally,
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Figure 13.2.6.  Phase functions for model 1 and 2 polydisperse spherical particles (solid
curves) and their Henyey–Greenstein counterparts (dotted curves).
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We also computed the plane albedo using the asymmetry-parameter-equivalent HG
phase functions. The ratios of these approximate plane-albedo values to the respective
exact ones are shown in the bottom panel of Fig. 13.2.7.

Not surprisingly, the plane albedos shown in the upper panel of Fig. 13.2.7 de-
crease with increasing mI and, thus, with decreasing single-scattering albedo. The
asymmetry-parameter-equivalent HG phase functions cause significant plane-albedo
errors, especially for grazing illumination. The use of the HG phase functions overes-
timates ),( 0P µTA  for small 0µ  and underestimates it for 0µ  close to one, which is
naturally explained by the angular pattern of the phase-function differences seen in
Fig. 13.2.6. The plane-albedo errors increase significantly with increasing absorption.
This trend is caused by the increasing relative contribution of the first-order scattering
coupled with the large phase-function differences.
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Figure 13.2.7.  Top panel: plane albedo versus 0µ  for two homogeneous semi-infinite slabs
composed of model 1 and 2 spherical particles, respectively. Bottom panel: plane albedos
computed for HG phase functions relative to their Lorenz–Mie counterparts.
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The respective spherical albedo ratios (0.99 for model 1 and 0.98 for model 2) are
much closer to unity. This much better accuracy of the HG estimate of the spherical
albedo can be explained in terms of cancellation of the plane-albedo errors upon inte-
gration over 0µ  in Eq. (13.2.8).

13.3 Polarization as an effect and as a particle
characterization tool

The widespread use of the scalar approximation has caused an equally widespread
ignorance of an important scattering effect called polarization. This term refers to the
situation when an initially unpolarized incident light becomes polarized upon scatter-
ing. This means that at least one of the elements of the specific intensity column vec-
tor other than the specific intensity acquires a nonzero value.

This effect is illustrated in Fig. 13.3.1 which parallels Fig. 13.2.2 but shows the
absolute value of the second element of the specific intensity vector of the reflected
light. Owing to the particular illumination geometry and to the incident beam being
unpolarized, the third and fourth elements of the specific intensity column vector are
equal to zero, whereas the second one is independent of the azimuth angle of the re-
flection direction.

There are two striking differences between the results shown in Fig. 13.2.2 and in
Fig. 13.3.1. First, the overall growth of |~|Q  as T  increases from 0.01 to 100 is more
than an order of magnitude smaller than that of .~I  Second, the saturation of |~|Q  oc-
curs at smaller values of the optical thickness than that of .~I  In particular, the |~|Q
curves for T  = 10 and T  = 100 are hardly distinguishable, while the overall growth of

|~|Q  as T  increases from 1 to 100 is less than a factor of 2. These results suggest une-
quivocally that the main contribution to Q~  comes from the first few orders of scat-
tering, the first-order scattering being the prime contributor, whereas light scattered
many times becomes largely unpolarized.

These conclusions are corroborated by Fig. 13.3.2 which shows the corresponding
signed degree of linear polarization of the reflected light (cf. Eq. (2.9.23)). One can
see indeed that the ratio IQ ~~−  for small T essentially replicates the ratio 11 ab−  of
the elements of the normalized Stokes scattering matrix (see the bottom left-hand
panel in Fig. 13.2.1), whereas the growth of T only serves to make the polarization
more neutral.

Note that the deep spikes in the curves shown in Fig. 13.3.1 correspond to so-
called inversion (or neutral) points, i.e., scattering angles at which the signed degree
of linear polarization switches sign. The remarkable constancy of both inversion an-
gles with increasing T in Fig. 13.3.2 indicates too that the main contribution to polari-
zation comes from the first-order scattering.

The above conclusions regarding Q~  apply also to the third element of the specific
intensity column vector, ,~U  in cases when the scattering geometry does not cause the
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latter to vanish. The first-order scattering of unpolarized incident light in an ISM does
not contribute to the fourth element of the specific intensity column vector, ,~V  as
follows from the comparison of Eq. (13.2.2) with Eqs. (11.3.1) and (11.3.2) (Hansen,
1971b). Therefore, the main contribution to this element comes from several low-
order-scattering events except first-order scattering. This explains the small magni-
tude of  IV ~~  for all T  in most cases and the fact that the corresponding inversion
points can move considerably with increasing T (Hansen and Travis, 1974).

The majority of particle characterization techniques in disciplines such as terres-
trial and planetary remote sensing, astrophysics, and biomedicine are based on inten-
sity measurements (e.g., Stephens, 1994; Liou, 2002; Tuchin, 2002). However, there
are two major factors that can make polarimetry a much more sensitive particle char-
acterization tool.

First, the absolute accuracy of intensity measurements is typically of order 0.05I
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Figure 13.3.1.  |),,0(~| ϕµ−Q  (in )srmW 22 −−  versus µarccos180 −°  for a homogeneous
slab composed of polydisperse spherical particles with an effective radius =effr µm,05.1  an
effective variance ,07.0eff =v  and a relative refractive index m = 1.44. The wavelength of the
incident light is =1λ  550 nm. The slab optical thickness varies from T  = 0.01 to T  = 100.
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and can become significantly worse for weak signals, whereas the absolute accuracy
of measurements of the ratios ,IQ  ,IU  and IV  can be as good as 0.001 and
sometimes is much better (see, e.g., Table 1.3 of Tinbergen (1996) which lists the best
accuracies obtained in various types of astrophysical polarimetric observations).
Theoretically, these ratios can vary between –1 and +1 (see the inequality (2.9.16)).
However, the 0.001 absolute accuracy even makes informative data spanning a sig-
nificantly narrower range, as, for example, in Fig. 13.3.2.

Second, since a major contribution to Q~  and U~  comes from light scattered once,
these quantities preserve more information content of the Stokes scattering matrix
than the specific intensity. Furthermore, the single-scattering polarization

)()( 11 ΘΘ ab−  exhibits a much stronger variability with particle size, shape, and
relative refractive index than the phase function ),(1 Θa  which makes the former a
more sensitive indicator of particle microphysical characteristics (see Chapters 9 and
10 of MTL and references therein).

A classical example of the use of polarimetry in remote sensing is the analysis of
ground-based polarization observations of Venus by Hansen and Hovenier (1974).
Figures 13.3.3 and 13.3.4 show the results of measurements of the signed degree of
linear polarization of sunlight reflected by the entire planet as a function of scattering

−0.5

−0.25

0

0.25

−
Q

I

T  = 100
  10
    1
 0.1
0.01

~
~

120 150 18090

°180 θ−

Figure 13.3.2.  As in Fig. 13.3.1, but for .),,0(~),,0(~ ϕµϕµ −−− IQ



Chapter 13360

angle at wavelengths 0.55 and 0.99 µm, respectively. The scattering angle refers to
first-order scattering only, i.e., it is the angle between the unti-solar direction and the
direction towards the Earth as viewed from Venus. The curves depict the results of
theoretical calculations based on a simple model of the Venus atmosphere in the form
of a homogeneous, optically semi-infinite, locally plane-parallel cloud layer uni-
formly covering the entire planet. The cloud particles were assumed to be spherical,
and their single-scattering properties were modeled using the Lorenz–Mie theory. The
computations of multiple scattering of light in the atmosphere were based on the
adding/doubling method. Hansen and Hovenier used the simple gamma distribution
(5.3.15) to represent analytically the distribution of cloud particles over sizes and
found the parameters )(  effra =  and )( effv=b  of this distribution, as well as the
relative refractive index, by minimizing the differences between the observational
data and the results of model computations.

From the comparisons between the computed and observed quantities, Hansen and
Hovenier deduced the following:
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Figure 13.3.3.  Observations of the polarization of sunlight reflected by Venus in the visual
wavelength region (symbols) and theoretical computations at µm 55.0 wavelength (curves).
The theoretical results are based on a model of nonabsorbing spherical particles with fixed
relative refractive index (m = 1.44) and fixed effective variance of the size distribution =eff(v
0.07). The different curves show the influence of the effective radius effra ≡  on the
polarization. (After Hansen and Hovenier, 1974.)
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● The observations can indeed be reproduced quantitatively using a model of
nonabsorbing spherical particles. The measurements at visible wavelengths
contain a clear signature of the spherical particle shape, such as the primary
rainbow at Θ ∼ 160° and an anomalous diffraction feature at Θ ∼ 25° (cf.
Fig. 13.3.3 and the lower left panel of Fig. 13.2.1). This interpretation is con-
firmed by the spectral variation of the observed polarization.

● The effective radius of the cloud droplets is 1.05 ± 0.10 µm. This value is
consistent with the large observed variations of the rainbow and anomalous
diffraction features with changing wavelength in precise agreement with the
Lorenz–Mie theory, including a changeover toward Rayleigh scattering at
longer wavelengths (and thus smaller size parameters; see the bottom left-
hand panel of Plate 11.13.1). The large difference in the observed polarization
between visible and near-infrared wavelengths is a direct indication that the
size of the cloud droplets must be of the order of the wavelength in this spec-
tral region. In particular, the complete disappearance of the rainbow and
anomalous diffraction features at wavelengths �0.9 µm and their obvious
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Figure 13.3.4.  Observations (symbols) and theoretical computations (curves) of the
polarization of the sunlight reflected by Venus at µm 99.0  wavelength. The different
theoretical curves are for various relative refractive indices, the effective radius being selected
in each case to yield the closest agreement with the observations.  The effective variance of the
cloud-droplet size distribution is fixed at 0.07.  (After Hansen and Hovenier, 1974.)
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prominence at wavelengths �0.55 µm allows one to determine the particle
size with extreme precision.

● The particle size distribution is narrow, with an effective variance =effv
.02.007.0 ±  The upper limit on the effective-variance value follows from the

fact that the anomalous diffraction feature can only be observed for effv �

0.07 (see Plate 11.13.1). The lower limit is consistent with the measurements
at wavelengths �1 µm which show negative polarization at all scattering an-
gles (see Fig. 13.3.4 and Plate 11.13.1).

● The cloud-particle relative refractive index has a normal spectral dispersion,
decreasing from 1.46 ± 0.015 at a wavelength µm365.0  to 1.43 ± 0.015 at a
wavelength µm. 99.0  The extreme sensitivity of polarization measurements
to the relative refractive index is well illustrated by Fig. 13.3.4.

Based on the spectral dependence of the refractive index, Hansen and Hovenier
concluded that the cloud particles consist of a concentrated (76% by weight) aqueous
solution of sulfuric acid O).HSO(H 242 −  This remarkable result has been confirmed
by subsequent in situ measurements and observations from Venus-orbiting satellites
(e.g., Sato et al., 1996 and references on page 139 of Hovenier et al., 2004).

13.4 Depolarization

Another important effect of multiple scattering is depolarization. This term refers to
the situation when an initially completely polarized (either linearly or circularly)
beam becomes partially polarized or even completely unpolarized upon scattering.
Most natural sources of light are not completely polarized and some of them, such as
the sun, are unpolarized. Therefore, depolarization is usually observed in measure-
ments involving an artificial source of illumination such as a laser or a transmitting
antenna.

The effect of depolarization is especially relevant to analyses of monostatic lidar
and radar observations involving the measurement of two or more Stokes parameters
of light reflected by a particulate medium in the exact backscattering direction (i.e.,
towards the source of illumination). Such observations can also be influenced quite
significantly by the effect of coherent backscattering. Therefore, we will postpone the
discussion of various manifestations of depolarization and its practical usage as a par-
ticle characterization tool until Chapter 14.

13.5 Further reading

Diverse applications of radiative transfer in atmospheric radiation and terrestrial re-
mote sensing are discussed in the monographs by Ulaby et al. (1986), Asrar (1989),
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Goody and Yung (1989), Liou (1992, 2002), Janssen (1993), Jin (1993), Lenoble
(1993), Fung (1994), Natsuyama et al. (1998), Thomas and Stamnes (1999), Guzzi
(2003), Kokhanovsky (2003), and Sharkov (2003). The subject of ocean optics is well
covered in the books by Shifrin (1988), Mobley (1994), and Spinrad et al. (1994).
Planetary remote sensing and various applications of radiative transfer in astrophysics
are described in Gehrels (1974), Dolginov et al. (1995), Hanel et al. (2003), Moroz-
henko (2004), and Videen et al. (2004a,b). Applications in engineering and biomedi-
cine are discussed thoroughly in the monographs by Bayvel and Jones (1981), Tuchin
(2002), and Modest (2003) as well as in the special journal issues edited by Mengüç
et al. (2002, 2005).

Radiance errors resulting from the use of the scalar approximation in radiative
transfer computations for realistic atmosphere–surface models and their practical im-
plications are studied in Kattawar and Adams (1990), Stammes (1994), Petropavlov-
skikh et al. (2000), Oikarinen (2001), Hasekamp et al. (2002), Landgraf et al. (2004),
Levy et al. (2004), Loughman et al. (2004), Sromovsky (2005), and Stam and Ho-
venier (2005). Detailed discussions of polarized radiative transfer in Rayleigh-
scattering slabs, including specific phenomena like points of neutral polarization and
neutral lines, can be found in the monographs by Coulson (1988) and Viik (1989) as
well as in the numerous publications referenced therein.

Dubovik et al. (2002) discussed the retrieval of microphysical properties of aero-
sols using multi-wavelength measurements of extinction and sky radiances. The char-
acterization of water-cloud droplets and spherical aerosol particles using radiance
measurements from space is reviewed by King et al. (1992), Martonchik et al. (1998),
King et al. (1999), and Rossow and Schiffer (1999).

The tutorial papers by Mishchenko and Travis (1997a,b) and Mishchenko et al.
(2004c) provide a systematic sensitivity analysis of various passive aerosol retrieval
algorithms based on intensity and/or polarization measurements from aircraft or space
platforms and demonstrate the great superiority of the algorithms utilizing pola-
rimetric data. Specific applications of polarimetry in remote sensing of terrestrial
aerosols and clouds have been documented in Brogniez et al. (1992), Buriez et al.
(1997), Bréon and Goloub (1998), Deuzé et al. (2000), Masuda et al. (2000), Sano
and Mukai (2000), Knap et al. (2005), and Chowdhary et al. (2001, 2002, 2005).
Numerous other applications of the vector RTT in terrestrial and planetary remote
sensing are listed in Section 5.1 of Hovenier et al. (2004). They range from the inter-
pretation of ground-based polarimetric observations of Venus to potential detection
and characterization of extrasolar planets (Stam et al., 2004). New approaches to re-
trieval algorithm development based on the application of perturbation procedures to
the VRTE are discussed in Polonsky and Box (2002), Postylyakov (2004), and Ha-
sekamp and Landgraf (2005) as well as in the earlier publications referenced therein.

There is a rapidly growing number of publications in which numerical solutions of
the RTE are used to model directional reflectance and transmittance characteristics of
various particulate surfaces (see, e.g., Aoki et al., 1999; Leroux et al., 1999; Mish-
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chenko et al., 1999b; Petrova et al., 2001; Kokhanovsky, 2004; Liang, 2004; Okin
and Painter, 2004; and references therein). The formal applicability of the RTT rests
on the assumption that scattering particles are located in each-other’s far-field zones.
The violation of this assumption in the case of particulate surfaces can lead to specific
high-density effects (e.g., Kumar and Tien, 1990; Mishchenko, 1994; Garg et al.,
1998; Nashashibi and Sarabandi, 1999; Shinde et al., 1999; Tsang and Kong, 2001;
Loiko and Miskevich, 2004; and references therein). Therefore, it is important to
analyze both theoretically and experimentally to what extent the classical RTE can be
applied to densely packed particulate media. Some progress in this direction has been
reported by Sergent et al. (1998), Hespel et al. (2003), Li and Zhou (2004), Painter
and Dozier (2004), and Zhang and Voss (2005).
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Chapter 14

Coherent backscattering

The main advantage of the microphysical approach to radiative transfer is that it es-
tablishes a direct link between the macroscopic Maxwell equations and the RTE via a
sequence of eight unambiguously defined and physically realizable assumptions and
approximations summarized in Section 8.11. This link ensures that all parameters
entering the RTE are well-defined and measurable physical quantities and thereby
enables direct quantitative comparisons of RTT results with results of controlled labo-
ratory experiments and full-closure field experiments.

The above statement can be rephrased as follows. Suppose one performs a de-
tailed set of measurements of various characteristics of electromagnetic radiation
multiply scattered in a sparse discrete random medium and supplements them by
comprehensive accurate measurements of macro- and microphysical parameters of
the scattering medium. Suppose also that the optical measurements are sufficiently
accurate and comprehensive and can be reproduced quantitatively by the RTE when
the latter is applied to the measured macro- and microphysical parameters. Then one
may conclude that, in all likelihood, the observed scattering process falls in the realm
of radiative transfer.

By keeping assumptions 1 through 7 from Section 8.11 but relaxing approxima-
tion 8, one can extend the microphysical approach and establish a similar direct link
between the macroscopic Maxwell equations and the effect of coherent backscattering
of light by sparse discrete random media. Specifically, one can supplement the com-
putation of the ladder component of the coherency dyadic, ),(L rC

�

 with the computa-
tion of the so-called “cyclical” component, ).(C rC

�

 The latter is the sum of all so-
called maximally crossed diagrams in the diagrammatic representation of the coher-
ency dyadic. As pointed out in Sections 1.8 and 8.11, the sum of the corresponding
specific coherency dyadics can be expected to provide a better representation of the
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properties of radiation scattered by the medium in directions exactly or approximately
opposite to the illumination direction.

It should be recognized from the outset that CB is not an independent physical
phenomenon. It is implicitly contained in the exact solution of the Maxwell equations
but “falls through the cracks” when one resorts to the ladder approximation in order to
simplify the computation. Therefore, one may characterize CB as the difference be-
tween the exact solution of the Maxwell equations for a sparse discrete random me-
dium and the ladder approximation, although this characterization may not be quite
accurate since it still neglects the existence of light-scattering paths that go through a
particle more than once.

CB can manifest itself in several different ways. Apparently, the first laboratory
observation of CB, in the form of the so-called polarization opposition effect (Mish-
chenko, 1993), was reported by Lyot (1929). Oetking (1966) observed CB in the form
of a narrow intensity peak centered at the exact backscattering direction. However,
neither Lyot nor Oetking offered a correct theoretical explanation of their experi-
mental results.

The first theoretical prediction of the potential presence of CB in multiply scat-
tered light was made by K. M. Watson with a reference to a private communication
from R. Ruffine (Watson, 1969). Barabanenkov (1973) introduced the concept of
maximally crossed (or cyclical) diagrams which proved to be a very useful interpreta-
tion tool widely accepted in the multiple-scattering theory.

The first true laboratory demonstrations of CB accompanied by a correct theoreti-
cal interpretation should be credited to Kuga and Ishimaru (1984), Tsang and Ishi-
maru (1984), Van Albada and Lagendijk (1985), and Wolf and Maret (1985). Since
then, CB has been the subject of active theoretical and experimental research and has
been the centerpiece of many applications of electromagnetic scattering in remote
sensing and particle characterization.

14.1 Specific coherency dyadic

Consider again a scattering object in the form of a large group of discrete, randomly
and sparsely distributed particles (Fig. 14.1.1). The object is illuminated by a plane
electromagnetic wave propagating in the direction of a unit vector ,ˆ 0n

.0ˆ        ,)iˆiexp(    ),( 0
inc
001

inc
0

inc =⋅−⋅= nErnErE tkt ω     (14.1.1)

The reader may recall that the RTE was derived in Chapter 8 by neglecting all dia-
grams with crossing connectors in the diagrammatic representation of the coherency
dyadic. Following the line of reasoning outlined in Section 8.11, one may indeed con-
clude that upon statistical averaging the contribution of all the diagrams of the type
illustrated in Fig. 14.1.2 must vanish at observation points located either inside the
object (observation point 1 in Fig. 14.1.1) or outside the object (observation point 2).
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However, there is an exception corresponding to the situation when the observation
point is very far (ideally, infinitely far) from the scattering object and is located
within its “back-shadow” (observation point 3). Then the class of diagrams illustrated
by panels (c)–(e) in Fig. 14.1.2 gives a nonzero contribution that causes CB. These
diagrams are called maximally crossed since they can be drawn in such a way that all
connectors cross at one point.

The expression for the cumulative contribution of all maximally crossed (or cycli-
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Figure 14.1.1.  Scattering of a plane electromagnetic wave by a volume of sparse, discrete
random medium.
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Figure 14.1.2. Diagrams with crossing connectors.
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cal) diagrams to the coherency dyadic at an observation point can be derived using the
diagrammatic technique introduced in Chapter 8. The reader can verify that the final
result can be summarized by the diagrammatic expression shown in Fig. 14.1.3. The
symbol Σ has the usual meaning and denotes both the summation over all appropriate
particles and the statistical averaging over the particle states and positions, whereas
the double lines account for the effect of coherent attenuation and, possibly, dichro-
ism. It is very instructive to compare Fig. 14.1.3 with Fig. 8.6.1 since this comparison
reveals quite vividly the morphological difference between the participating diagrams.

In order to simplify further discussion, we will assume that the scattering medium
is a plane-parallel slab of infinite horizontal extent, as shown in Fig. 14.1.4. It will be
convenient for our purposes to express the coherency dyadic at a remote observation
point as the sum of the coherent (subscript c), single-scattering (subscript 1), diffuse
multiple-scattering (subscript M), and cyclical (subscript C) components:

CL CCC
���

+=   

  .CM1c CCCC
����

+++=       (14.1.2)

The corresponding diagrammatic expressions for these components are shown in
Figs. 14.1.3 and 14.1.5 (cf. Fig. 8.6.1).

According to subsections 8.14.1 and 8.14.2, the coherent, single-scattering, and
diffuse multiple-scattering components of the coherency dyadic at the remote obser-
vation point can be expressed in terms of the respective specific coherency dyadics:

,)ˆ(ˆd   c
4  

c nnΣ
π

��

=C           (14.1.3)

,)ˆ(ˆd   1
4  

1 nn Σ
π

��

=C           (14.1.4)

,)ˆ(ˆd   M
4  

M nn Σ
π

��

=C           (14.1.5)

where the unit vector n̂  specifies the direction of the incoming scattered light. The
specific coherency dyadics characterize the angular distribution of electromagnetic
radiation entering the observation point. Both )ˆ(1 nΣ

�

 and )ˆ(M nΣ
�

 vanish if the unit
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Figure 14.1.3.  The cyclical part of the coherency dyadic.
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vector n̂  does not specify an upward direction. The coherent specific coherency dy-
adic is given by

,)ˆˆ(δ    )ˆ( inc
0c ρΣ �

�

nnn −=           (14.1.6)

where
∗⊗= )(   inc

0
inc
0

inc EEρ�      (14.1.7)

is the coherency dyad of the incident plane wave. Obviously, )ˆ(c nΣ
�

 vanishes unless
.ˆˆ 0nn =  The sum of the single-scattering and diffuse multiple-scattering specific co-

herency dyadics is equal to the diffuse specific coherency dyadic )ˆ(d nΣ
�

 given by Eq.
(8.14.10):

).ˆ()ˆ()ˆ( M1d nnn ΣΣΣ
���

+=      (14.1.8)

According to subsection 8.14.2, )ˆ(d nΣ
�

 is equal to the internal diffuse specific coher-
ency dyadic at the boundary point C where the line drawn through the observation
point in the direction n̂−  enters the scattering slab (Fig. 14.1.4). As such it can be
computed by solving the RTE.

It is rather straightforward to show that an expression similar to Eq. (14.1.5) can
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Figure 14.1.4.  Reflection of light by a plane-parallel slab of sparse, discrete random medium.
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be written for the cyclical component of the coherency dyadic:

.)ˆ(ˆd   C
4  

C nn Σ
π

��

=C           (14.1.9)

Indeed, the upper and lower scattering paths of each cyclical diagram involve the
same group of particles but taken in opposite order. This is illustrated in Fig. 14.1.6
which shows a cyclical diagram involving N connected particles. The light propagat-
ing along the upper path arrives at the observation point in the form of a spherical
wavelet centered at particle 1, whereas that propagating along the lower path arrives
at the observation point in the form of a spherical wavelet centered at particle N.
However, if the distance Nd1  between particles 1 and N is much smaller than the
distance d from the slab to the observation point,

Nd1 � d,   (14.1.10)

then the direction of propagation of both wavelets at the observation point will be
essentially the same. As a consequence, the expanded analytical expression for the
cyclical component of the coherency dyadic analogous to Eq. (8.14.10) leads to Eq.

=

⇒
⇒cC

t

=

⇒
⇒

∑

1C
t

= +

⇒
⇒

⇒
⇒

∑ ∑ ∑ ∑ ∑

+

⇒
⇒

∑ ∑ ∑ ∑

+

MC
t

Figure 14.1.5.  Various components of the ladder coherency dyadic.
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Figure 14.1.6.  A cyclical diagram involving N connected particles.
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(14.1.9).
The above results show that the full coherency dyadic can be expressed in terms

of the full specific coherency dyadic,

.)ˆ(ˆd   
4  

nnΣ
π

��

=C         (14.1.11)

The latter, in turn, can be expressed as the sum of the coherent, single-scattering, dif-
fuse multiple-scattering, and cyclical components:

)ˆ()ˆ()ˆ( CL nnn ΣΣΣ
���

+=   

 ).ˆ()ˆ()ˆ()ˆ( CM1c nnnn ΣΣΣΣ
����

+++=   (14.1.12)

14.2 Reflected light

From this point on, we will often specify propagation directions using the notation
introduced in Section 10.1. The expanded analytical versions of the diagrammatic
formulas in Figs. 14.1.3 and 14.1.5 show that for light reflected in an upward direc-
tion ,n̂

,ˆ)ˆ()ˆ(ˆ 11 0nn =⋅−=−⋅ µΣµΣ
��

          (14.2.1)

,ˆ)ˆ()ˆ(ˆ MM 0nn =⋅−=−⋅ µΣµΣ
��

          (14.2.2)

.ˆ)ˆ()ˆ(ˆ CC 0nn =⋅−=−⋅ µΣµΣ
��

          (14.2.3)

Furthermore, they show that the single-scattering, diffuse multiple-scattering, and
cyclical components of the specific coherency dyadic are linearly expressed in the
coherency dyad of the incident plane electromagnetic wave given by Eq. (14.1.7).
Consequently, we may do two important things. First, we may define the corre-
sponding specific coherency column vectors,

),ˆ(~)ˆ(~)ˆ(~)ˆ(~ CM1 µµµµ −+−+−=− JJJJ       (14.2.4)
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Second, we may define the corresponding 44×  coherency reflection matrix ,ˆ(µJR
)ˆ0µ  according to

000 )ˆ ,ˆ(1)ˆ(~ JJ µµµ
π

µ JR=−                 (14.2.8)

and represent it as a sum of the corresponding single-scattering, diffuse multiple-
scattering, and cyclical components:
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where 0J  is the coherency column vector of the incident plane wave:
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In the Stokes-vector representation, we have

),ˆ(~)ˆ(~)ˆ(~)ˆ(~ CM1 µµµµ −+−+−=− IIII     (14.2.11)
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It is obvious that the sum of the single-scattering and diffuse multiple-scattering com-
ponents of the reflection matrix,

),ˆ ,ˆ()ˆ ,ˆ()ˆ ,ˆ( 0
M

0
1

0 µµµµµµ RR +=R     (14.2.21)

yields the Stokes reflection matrix obtained by solving the RTE (cf. Eq. (10.3.12)).
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Consider now the response of a well-collimated polarization-sensitive detector of
electromagnetic energy located at the distant observation point, Fig. 14.1.4. Let us
imagine that the detector scans a range of upward propagation directions n̂  including
the exact backscattering direction given by .ˆˆ 0nn −=  According to the previous dis-
cussion of CB, it is useful to consider the following three particular situations:

● The incoming propagation direction n̂  is far from the exact backscattering di-
rection .ˆ 0n−  Then the cyclical specific coherency dyadic vanishes, and the
detector response is fully determined by the diffuse specific coherency dyadic

).ˆ(d nΣ
�

 This means that the response of the detector can be fully quantified in
terms of the reflection matrix )ˆ ,ˆ( 0µµR  obtained by solving the RTE.

● The detector registers light propagating in the exact backscattering direction.
Then the effects of CB can be expected to be maximal and must be taken into
account. We shall demonstrate in the following section that the Saxon’s reci-
procity relation (3.4.19) can be used to derive an exact analytical expression
of the cyclical component of the backscattering reflection matrix )ˆ ,ˆ( 00

C µµR
in terms of the diffuse multiple-scattering component ).ˆ,ˆ( 00

M µµR  This fun-
damental result also allows one to fully quantify the response of the detector
centered at the exact backscattering direction in terms of the solution of the
RTE.

● As the detector axis deviates more and more from the exact backscattering di-
rection the effects of CB can be expected to weaken and gradually disappear.
The computation of the angular profile of the detector response in this transi-
tion region of incoming directions is a difficult task and will be discussed in
Section 14.7.

14.3 Exact backscattering direction

We will now discuss the computation of the cyclical specific coherency dyadic for the
case of the exact backscattering direction, .ˆˆ 0nn −=  Let us consider first the simplest
two-particle diagrams depicted in Fig. 14.3.1. All four diagrams involve the same
particles, 1 and 2, and an observation point D located at a very large distance from the
scattering medium, as shown schematically in Fig. 14.3.2. Let Ar  be the position
vector of the boundary point A. Then the corresponding time-independent part of the
electric field is

.)ˆiexp( 01
inc
0

inc
AA k rnEE ⋅=     (14.3.1)

It is easy to see that the time-independent part of the electric field at the boundary
point B is
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,)iexp( 1
incinc BCkAB EE =        (14.3.2)

where BC  is the distance from point C to point B.
Let us introduce the following two dyadics:

12
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  ),1,ˆ()ˆ,ˆ(
21

)21,ˆ(
00211

21 AA nnRR ηη �

�

�

⋅⋅⋅     (14.3.4)

where 12R̂  and 1221
ˆˆ RR −=  are unit vectors shown in Fig. 14.3.2 and η�  is the coher-

ent transmission dyadic given by Eq. (8.3.13). It is easy to see that the contribution of
the two ladder diagrams shown in Fig. 14.3.1(a) to )ˆ( 0M n−Σ

�

 is described by the dy-
adic

∗∗ ⋅′⊗⋅′+⋅⊗⋅= )()()()( incincincinc
AAAA YYYYM EEEE

�����

   

   .)( TincTinc ∗∗ ′⋅⋅′+⋅⋅= YYYY
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�

��

�

�

ρρ        (14.3.5)

Analogously, the contribution of the two cyclical diagrams shown in Fig. 14.3.1(b) to
)ˆ( 0C n−Σ

�

 is described by the dyadic

∗∗ ⋅⊗⋅′+⋅′⊗⋅= )()()()( incincincinc
AAAA YYYYC EEEE

�����

   

  .)( TincTinc ∗∗ ⋅⋅′+′⋅⋅= YYYY
�

�

��

�

�

ρρ     (14.3.6)

 It is now the right time to recall the reciprocity relations (3.4.19) and (8.3.28). The
application of these relations along with the equality DCDA =  and the approximate
equality

1
1
D

 ≈ 
2

1
D

     (14.3.7)

to Eqs. (14.3.3) and (14.3.4) yields

⇒
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2 1
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⇒
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Figure 14.3.1.  Conjugate pairs of two-particle ladder and cyclical diagrams.
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,TYY
��

=′        (14.3.8)

whereas the substitution of Eq. (14.3.8) in Eqs. (14.3.5) and (14.3.6) gives

,incTTinc ∗∗ ⋅⋅+⋅⋅= YYYYM
�

�

��

�

��

ρρ        (14.3.9)

.TincTinc ∗∗ ⋅⋅+⋅⋅= YYYYC
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��

�

��

ρρ   (14.3.10)

The next step is to introduce the following four scalars:

),ˆ(ˆ)ˆ(ˆ
00 nθnθ ⋅⋅= Ya

�

     (14.3.11)

),ˆ(ˆ)ˆ(ˆ
00 nφnθ ⋅⋅= Yb

�

    (14.3.12)

),ˆ(ˆ)ˆ(ˆ 00 nθnφ ⋅⋅= Yc
�

    (14.3.13)

).ˆ(ˆ)ˆ(ˆ 00 nφnφ ⋅⋅= Yd
�

     (14.3.14)

Using Eq. (14.3.9) in Eq. (14.2.6) evaluated for 0ˆˆ nn −=  and taking into account
Eqs. (3.4.20), (A.6), (A.12), and (14.2.10) shows that the contribution of the two lad-
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A
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Tow
ards observation point D

Tow
ards observation point D

n̂0

12R̂
21R̂

Plan
e e

lec
tro

magnetic
 wave

Figure 14.3.2.  Derivation of Eqs. (14.3.3) and (14.3.4).
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der diagrams shown in Fig. 14.3.1(a) to the diffuse multiple-scattering specific coher-
ency column vector is given by
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  (14.3.15)

Analogously, using Eq. (14.3.10) in Eq. (14.2.7) evaluated for 0ˆˆ nn −=  shows that
the contribution of the two cyclical diagrams shown in Fig. 14.3.1(b) to the coherent
specific coherency column vector is given by
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  (14.3.16)

Although Eqs. (14.3.15) and (14.3.16) were derived for sums of two-particle lad-
der and cyclical diagrams, respectively, it is easy to see that they are valid for sums of
ladder and cyclical diagrams involving any N particles, Fig. 14.3.3. Therefore, Eqs.
(14.2.8), (14.2.9), (14.3.15) and (14.3.16) imply that the backscattering coherent ma-
trix )ˆ ,ˆ( 00

C µµπJR  can be expressed in terms of the backscattering diffuse multiple-
scattering matrix ),ˆ ,ˆ( 00

M µµπJR  where πµ0ˆ  denotes the couplet }.,{ 00 πϕµ +  Spe-
cifically,
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(Mishchenko, 1992a). The importance of this rigorous relationship is difficult to over-
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Figure 14.3.3.  Conjugate pairs of N-particle ladder and cyclical diagrams.
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state. Indeed, it demonstrates that although the RTT is based on the neglect of all cy-
clical diagrams, all observable characteristics of CB at the exact backscattering di-
rection can still be calculated by solving the RTE. Specific applications of this fun-
damental result will be described in Sections 14.5 and 14.6.

In what follows, we will simplify the discussion by assuming that the scattering
medium is macroscopically isotropic and mirror-symmetric. Equations (12.6.9) and
(12.6.12) imply that the backscattering Stokes matrix )ˆ,ˆ( 00

M µµπR  has the following
block-diagonal structure:
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Equation (14.2.18) then yields for the backscattering coherency matrix :)ˆ,ˆ( 00
M µµπJR
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As a consequence, Eq. (14.3.17) becomes considerably simpler:
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Equations (4.2.18) and (4.2.19) finally yield for the backscattering Stokes matrix
:)ˆ ,ˆ( 00

C µµπR
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where
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The actual application of the above formulas requires the knowledge of the matri-
ces )ˆ ,ˆ( 00

1 µµπR  and ).ˆ,ˆ( 00
M µµπR  According to Eq. (14.2.21), the diffuse multiple-

scattering component can be found by subtracting the first-order scattering component
from the reflection matrix )ˆ,ˆ( 0µµR  obtained by solving the VRTE:

).ˆ ,ˆ()ˆ ,ˆ()ˆ ,ˆ( 0
1

00
M µµµµµµ RR −= R     (14.3.26)

A simple formula for the first-order-scattering contribution )ˆ,ˆ( 0
1 µµR  can be derived

from the invariant imbedding equation (12.4.1) using the order-of-scattering expan-
sion (12.5.1) and by taking into account that

).ˆ ,ˆ()ˆ ,ˆ( 010
1 µµϖµµ R=R   (14.3.27)

Indeed, assuming that the scattering slab is homogeneous and substituting Eq.
(12.5.1) in Eq. (12.4.1) yields
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The solution of this equation satisfying the initial condition (12.4.5) is
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In the case of a homogeneous semi-infinite slab,
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Eqs. (14.3.29) and (14.3.30) yield
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The matrix )ˆ ,ˆ( 0µµR  for a finite slab can be found as a solution of the invariant
imbedding equation (12.4.1) supplemented by the initial condition (12.4.5). Alterna-
tively, it can be calculated using the doubling method. In the case of a homogeneous
semi-infinite slab it is more efficient to compute the matrix )ˆ,ˆ( 0µµR  by solving it-
eratively the Ambarzumian equation (12.4.9). The actual numerical data discussed in
Subsection 14.5.6 and Section 14.6 were obtained with computer codes described in
Mishchenko (1990b, 1996).

Note that by virtue of representing the solution of the VRTE for a plane-parallel
slab of infinite horizontal extent, the matrices )ˆ,ˆ( 0

1 µµR  and )ˆ,ˆ( 0
M µµR  are inde-

pendent of the distance from the upper boundary of the slab to the observation point.
Equations (14.3.21)–(14.3.25) imply that this is also true of the cyclical matrix

).ˆ ,ˆ( 00
C µµπR

14.4 Other types of illumination

The above discussion of CB was explicitly based on the assumption that the incident
light is a plane electromagnetic wave. However, we could have made the discussion
more general by using the terminology introduced in Sections 3.10 and 8.15. For ex-
ample, we could have assumed that the discrete random medium is illuminated by a
parallel quasi-monochromatic beam and that significant changes of the transformation
dyadic occur much more slowly than the random oscillations of the electric field am-
plitude. It is then straightforward to show that the above equations remain valid pro-
vided that the coherency dyad of the incident plane wave, Eq. (14.1.7), is replaced by
the time average of the coherency dyad of the quasi-monochromatic beam, =��  inc

tρ�

.)]([)( inc
0

inc
0 ttt �⊗� ∗EE  This result allows one to study CB of partially polarized and

even unpolarized incident light.
Similarly, if the medium is illuminated by N quasi-monochromatic beams then it

can be shown that the total angular distribution of the reflected light is obtained by
adding the individual angular distributions computed for each incident quasi-
monochromatic beam separately. In particular, if the N beams are incident in different
directions then there will be N separate CB patterns centered at the respective back-
scattering directions. This conclusion remains valid if the medium is illuminated by
several plane electromagnetic waves provided that all of them have different angular
frequencies.
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14.5 Photometric and polarimetric characteristics of
coherent backscattering

The range of reflection directions affected by CB is usually rather small (see, for ex-
ample, Fig. 1.8.2). Therefore, Eqs. (14.2.16) and (14.3.21)–(14.3.25) can be used to
define several useful observable quantities relating characteristics of light reflected in
the exact backscattering direction and in nearby directions not affected by CB. We
will introduce these quantities under the assumption that the incident light is either
unpolarized, fully linearly polarized, or fully circularly polarized. These polarization
states of the incident light are most often encountered in practice. Typical examples
are unpolarized sunlight and linearly or circularly polarized electromagnetic radiation
emitted by lasers or radio antennas.

14.5.1 Unpolarized incident light

In this case the specific intensity reflected by a plane-parallel slab in the exact back-
scattering direction is given by
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22 Iµµµµµµ πππ RRR +−+  (14.5.1)

where 0I  is the incident intensity. Assuming that both )ˆ,ˆ( 0
1 µµR  and )ˆ ,ˆ( 0

M µµR
do not change significantly over the range of reflection directions affected by CB, we
can also write for the intensity of the surrounding “incoherent” (or “diffuse”) back-
ground (see Fig. 14.5.1):
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11000

diff II µµµµµ
π

πϕµ ππ RR +=+−     (14.5.2)

The above equations can be used to define the corresponding “unpolarized” en-
hancement factor as the ratio of the total intensity reflected in the exact backscattering
direction to that of the incoherent background:
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where we have omitted the angular arguments for the sake of brevity.
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It is interesting that the formula for the enhancement factor in the case of unpo-
larized incident light involves all four diagonal elements of the diffuse multiple-
scattering component of the reflection matrix rather than only the )1,1(  element. This
makes Eq. (14.5.3) quite different from the corresponding formula obtained in the
scalar approximation (Tsang and Ishimaru, 1985):

,
2

M1

M1

RR
RR

+
+

=ζ         (14.5.4)

where 1R  and MR  are the single-scattering and diffuse multiple-scattering compo-
nents of the scalar reflection coefficient, respectively. In fact, Mishchenko and
Dlugach (1992a) demonstrated on the basis of numerically exact radiative transfer
calculations that the approximate “scalar” formula (14.5.4) can cause errors far ex-
ceeding the errors of the scalar approximation in radiance calculations discussed in
Section 13.1.

14.5.2 Linearly polarized incident light

Let us now assume that the incident light is linearly polarized in the vertical direction,
so that .]00[ T

000 II=I  The vertically and horizontally polarized components of the
backscattered light are given by

)~~(~
2
1

v QII +=      (14.5.5)

and

),~~(~
2
1

h QII −=      (14.5.6)

respectively (see Eq. (2.6.9)). It is easy to see that the corresponding co-polarized and

Phase angle
0

R
ef

le
ct

ed
 s

pe
ci

fi
c 

in
te

ns
ity

0,           )(~I −µ

~diffI

α2 HWHM,I

ϕ0 + π

0,           )(−µ ϕ0 + π

Figure 14.5.1.  Coherent enhancement of backscattered intensity. The phase angle is defined as
the angle between the unit vectors n̂  and .ˆ 0n−
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cross-polarized enhancement factors can be defined as follows:
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It is also useful to define the linear polarization ratio and its diffuse counterpart as
the ratios of the corresponding cross-polarized and co-polarized backscattered spe-
cific intensities:
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The physical meaning of the linear polarization ratios will be discussed in the fol-
lowing section.

14.5.3 Circularly polarized incident light

Let us now assume that the incident light is circularly polarized in the anti-clockwise
sense as viewed by an observer looking in the direction of propagation, so that

.]00[ T
000 II=I  The “same-helicity” and “opposite-helicity” components of the

backscattered light are given by

)~~(~
2
1

sh VII +=    (14.5.11)

and

),~~(~
2
1

oh VII −=    (14.5.12)

respectively (see Eq. (2.6.10)). The corresponding “helicity-preserving” and “oppo-
site-helicity” enhancement factors are given by
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The circular polarization ratio and its diffuse counterpart are defined as the ratios of
the corresponding same-helicity and opposite-helicity backscattered specific intensi-
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ties:
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14.5.4 General properties of the enhancement factors and
polarization ratios

According to Subsection 4.5.2 of Hovenier et al. (2004), the matrices )ˆ ,ˆ( 0
1 µµR  and

)ˆ ,ˆ( 0
M µµR  belong to the class of matrices called “sums of pure Mueller matrices”.

As such, they satisfy linear inequalities listed in Subsection A.1.3 of Hovenier et al.
which can be used to derive several fundamental inequalities for the enhancement
factors and polarization ratios introduced above. Specifically,

,20 ≤≤ Iζ    (14.5.17)

,21 vv ≤≤ ζ    (14.5.18)

,20 hv ≤≤ ζ    (14.5.19)

,21 hp ≤≤ ζ    (14.5.20)

,20 oh ≤≤ ζ    (14.5.21)

,0L ≥µ    (14.5.22)

,0diff
L ≥µ    (14.5.23)

,0C ≥µ    (14.5.24)

.0diff
C ≥µ    (14.5.25)

Note that these general inequalities do not require the unpolarized, cross-polarized,
and opposite-helicity enhancement factors to be always greater than one. In other
words, they do not exclude the possibility that CB can cause suppression rather than
enhancement of the corresponding backscattered signal(s).

We will assume in this subsection that, in general, )()( 14 ππ aa −≠  in Eq.
(14.3.31), which implies that
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1
1100

1
44 µµµµ ππ RR −≠  (14.5.26)

Recalling the order-of-scattering expansion (12.5.1) and Eqs. (14.3.26) and (14.3.27),
we can conclude that in the limit 0→ϖ  the diffuse multiple-scattering component
of the reflection matrix must vanish much faster than the single-scattering component.
As a consequence, Eqs. (14.5.3), (14.5.7)–(14.5.10), and (14.5.13)–(14.5.16) yield
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0
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δµµ

ϖϖ
==

→→
    (14.5.29)

where Lδ  and Cδ  are the linear and circular backscattering depolarization ratios de-
fined by Eqs. (11.9.1) and (11.9.2), respectively.

In the limit ,00 →µ  the diffuse reflection matrix )ˆ,ˆ( 00 µµπR  also reduces to the
first-order-scattering component:

,)ˆ ,ˆ()ˆ ,ˆ(
000

1
00000

00 →→
=

µ
π

µ
π µµµµµµ RR   (14.5.30)

where

.
8

)(~
)ˆ ,ˆ(

000
1

0
0

πϖµµµ
µ

π F=
→

R   (14.5.31)

In the case =T ∞, these formulas follow directly from the Ambarzumian equation
(12.4.9).  However, they remain valid for any T since the amount of multiple scatter-
ing in a slab with a finite optical thickness cannot exceed that in a semi-infinite slab
with the same single-scattering albedo and phase matrix (see Hovenier and Stam,
2006 for a rigorous proof). This result means that in the limit  ,00 →= µµ  the dif-
fuse multiple-scattering component of the reflection matrix becomes negligible in
comparison with the single-scattering component. As a consequence,

,1limlimlimlimlim oh
0

hp
0

hv
0

vv
00 00000
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I   (14.5.32)
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.limlim C
diff
C

0
C

0 00

δµµ
µµ

==
→→

    (14.5.34)

Finally, Eqs. (13.2.2) and (14.3.32) yield

,)ˆ ,ˆ()ˆ ,ˆ(
000

1
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TT

µµµµ ππ RR   (14.5.35)

where
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4

)ˆ ,ˆ( 2
0

000
1 π

µ
ϖµµπ FT

T
=

→
R   (14.5.36)

Equation (14.3.26) then implies that )ˆ,ˆ( 00
M µµπR  vanishes and, consequently,

,1limlimlimlimlim oh
0
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00
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ζζζζζ
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The physical interpretation of Eqs. (4.5.27)–(14.5.29), (4.5.32)–(14.5.34), and
(4.5.37)–(14.5.39) is very transparent: either limit ,0→ϖ  ,00 →= µµ  or 0→T
eliminates multiple scattering and, consequently, any manifestation of CB.

14.5.5 Spherically symmetric particles

Equations (11.10.17), (14.3.31), and (14.3.32) imply that for spherically symmetric
particles,

)ˆ,ˆ()ˆ,ˆ( 00
1
1100

1
22 µµµµ ππ RR ≡   and  ).ˆ,ˆ()ˆ,ˆ( 00

1
1100

1
44 µµµµ ππ RR −≡  (14.5.40)

As a consequence, Eqs. (14.5.7)–(14.5.10) and (14.5.13)–(14.5.16) can be simplified
as follows:
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Now the enhancement factors hvζ  and hpζ  do not satisfy the limits (14.5.27),
(14.5.32), and (14.5.37). Since the elements of the single-scattering reflection matrix
do not contribute to the numerators of the linear and circular polarization ratios, we
also have
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14.5.6 Benchmark results for Rayleigh scattering

Since Rayleigh scattering is the simplest physically realizable type of scattering, it has
become a classical model in vector radiative transfer and has been used in many pub-
lications intended to provide benchmark numerical results (see, for example,
Chandrasekhar, 1950; van de Hulst, 1980; Mishchenko, 1990b; and references
therein). Given the exact nature of Eqs. (14.3.21)–(14.3.25) and the widespread ac-
ceptance of the Rayleigh scattering law as a canonical template, it is appropriate to
end this section with Table 14.5.1 listing benchmark values of the enhancement fac-
tors and polarization ratios for homogeneous slabs composed of nonabsorbing

)1( =ϖ  Rayleigh scatterers. The high numerical accuracy of the techniques de-
scribed in Mishchenko (1990b, 1996) allows us to expect that these numbers are accu-
rate to one or two units in the last decimals given. The numbers for =T ∞ are con-
sistent (to )101 6−×±  with those calculated by Amic et al. (1997) on the basis of a
completely independent solution technique.

14.6 Numerical results for polydisperse spheres and
polydisperse, randomly oriented spheroids

Plates 14.6.1–14.6.8 are composed of color contour diagrams of the photometric and
polarimetric characteristics of CB computed for homogeneous semi-infinite slabs
consisting of polydisperse spherical particles. The helicity-preserving enhancement
factor is not shown since it is identically equal to two, Eq. (14.5.45). The enhance-

Table 14.5.1. Enhancement factors and polarization ratios for
homogeneous slabs consisting of nonabsorbing Rayleigh
scatterers.
==========================================================

T = 1 T =
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Iζ 1.465559 1.5368115

vvζ 1.453065 1.7520882

hvζ 1.553473 1.1201587

hpζ 2

ohζ 1.337506 1.2509893
diff
Lµ 0.142105 0.5166812

Lµ 0.151925 0.3303286
diff
Cµ 0.239602 0.6170752

Cµ 0.358281 0.9865395

==========================================================

∞ 

2
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ment factors and polarization ratios are plotted as functions of the particle effective
size parameter ]30,0[2 1effeff ∈= λπ rx  and minus the cosine of the incidence polar
angle ∈0µ ]1,0[  for a set of values of the real =R(m  1.2, 1.4, 1.6, 1.8, and 2) and
imaginary =I(m  0, 0.002, 0.01, and 0.3) parts of the relative refractive index. The
Lorenz–Mie computations were performed for the gamma size distribution (5.3.15)
with a fixed effective variance =effv 0.1. Plates 14.6.1–14.6.8 are accompanied by
Figs. 14.6.1 and 14.6.2 which depict the corresponding single-scattering albedo ϖ
and backscattering phase function )(1 πa  versus effective size parameter.

The results shown in Plates 14.6.1, 14.6.2, and 14.6.4 illustrate well the limit
(14.5.32) and, for effx � 1, the limit (14.5.27). For larger particles, the limit (14.5.27)
cannot be verified because with increasing Im  the single-scattering albedo does not
tend to zero (see Fig. 14.6.1). Similarly, the data displayed in Plates 14.6.5–14.6.8
illustrate well the limits (4.5.49) and (4.5.50) for all four polarization ratios. Although
the general inequalities (14.5.17), (14.5.19), and (14.5.21) do not rule out values of

,Iζ  ,hvζ  and ohζ  smaller than one, our numerical results suggest that the value one
may be a more appropriate lower boundary for the unpolarized, cross-polarized, and
opposite-helicity enhancement factors. Unfortunately, we have not been able to prove
this analytically.

As follows from Eq. (14.5.41), the co-polarized enhancement factor vvζ  cannot
reach the value two since, for real scattering particles, )ˆ,ˆ( 00

1
11 µµπR  is never exactly

zero but rather is a positive number. The degree of deviation of the co-polarized en-
hancement factor from the value two strongly depends on the value of the backscat-
tering phase function )(1 πa  (cf. Eqs. (14.5.41), (14.3.33), and (14.3.31)). For nonab-
sorbing particles with 2.1R =m  and effective size parameters in the range

]20,2[eff ∈x  and for nearly normal incidence, )ˆ,ˆ( 00
1
11 µµπR  is small because )(1 πa

is small (Fig. 14.6.2) and 0µ  is close to one, whereas the multiple-scattering contri-
bution is large. As a consequence, the deviation of vvζ  from the value two is small
(Plate 14.6.2, top left-most diagram). In contrast, the (much) larger values of the
backscattering phase function for nonabsorbing particles with larger relative refrac-
tive indices (Fig. 14.6.2) cause co-polarized enhancement factors significantly smaller
than two (Plate 14.6.2, left-most column). According to Eq. (14.3.33), the single-
scattering contribution to the backscattering reflection matrix decreases with increas-
ing incidence polar angle, thereby causing vvζ  to be a monotonically increasing
function of 0µ  in most cases.

Not surprisingly, the effective size parameters at which Iζ  and vvζ  reach maxi-
mal values are close to those at which )(1 πa  and, thus, )ˆ,ˆ( 00

1
11 µµπR  have a minimum

(cf. Eqs. (14.5.3) and (14.5.41)). Increasing Im  causes a decrease in the single-
scattering albedo and, thus, a reduced diffuse multiple-scattering contribution to the
backscattering reflection matrix ).ˆ,ˆ( 00

M µµπR  This explains the significant reduction
of the co-polarized enhancement factor as Im  increases from 0 to 0.01 (Plate 14.6.2).
However, increasing Im  also makes the minima in the backscattering phase function
for =Rm  1.2, 1.4, and 1.6 deeper (Fig. 14.6.2), which appears to explain why Iζ
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Figure 14.6.1.  Single-scattering albedo ϖ versus effective size parameter effx  for a gamma
size distribution of spherical particles with =Rm  1.2, 1.4, 1.6, 1.8, and 2 and =Im 0.002,
0.01, and 0.3. The effective variance of the size distribution is fixed at 0.1. Note that 1≡ϖ  for
nonabsorbing particles with =Im 0.
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Figure 14.6.2.  Backscattering phase function )(1 πa  versus effective size parameter effx  for a
gamma size distribution of spherical particles with =Rm  1.2, 1.4, 1.6, 1.8, and 2 and =Im 0,
0.002, 0.01, and 0.3. The effective variance of the size distribution is fixed at 0.1.
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often increases as Im  increases from 0 to 0.01. Plates 14.6.1 and 14.6.2 also show
that an interesting cumulative result of the effects of increasing absorption on the sin-
gle-scattering albedo and backscattering phase function can be an increase in Iζ  and

vvζ  as Im  increases from 0.01 to 0.3, especially at larger effective size parameters.
Plate 14.6.3 shows that the cross-polarized enhancement factor hvζ  always in-

creases with decreasing multiple-scattering contribution, i.e., with increasing absorp-
tion and/or decreasing ,0µ  and can reach values very close to two. In contrast, the
opposite-helicity enhancement factor ohζ  can either decrease or increase with in-
creasing ,Im  Plate 14.6.4. This is explained by the presence of elements of both the
matrix )ˆ,ˆ( 00

1 µµπR  and the matrix )ˆ,ˆ( 00
M µµπR  on the right-hand side of Eq.

(14.5.46) and the presence of elements of only the matrix )ˆ,ˆ( 00
M µµπR  on the right-

hand side of Eq. (14.5.42).
It should be noted that accurate numerical computations of the cross-polarized en-

hancement factor become difficult for strongly absorbing particles and/or for grazing
illumination directions since both the numerator and denominator of the right-hand
side of Eq. (14.5.42) do not have a first-order-scattering component and become very
small with vanishing multiple-scattering contribution. Therefore, such computations
require the use of at least double-precision floating point variables with the general
inequality (14.5.19) serving as an important basic check on numerical accuracy.

Equations (14.5.43) and (14.5.44) suggest that in the absence of multiple scatter-
ing the backscattered light must be fully linearly polarized in the vertical direction. In
other words, single scattering by spherical particles in the exact backscattering direc-
tion does not depolarize linearly polarized incident light. However, upon multiple
scattering both the linear polarization ratio Lµ  and the linear polarization ratio of the
diffuse background diff

Lµ  can become nonzero. This means that the backscattered
light acquires a nonzero intensity component polarized in the horizontal direction.
Thus, the backscattered light becomes partially polarized. Referring to Section 13.4,
this effect can be called linear depolarization.

Similarly, let us consider the illumination of a slab by light circularly polarized in
the anti-clockwise sense when looking in the direction of incidence .ˆ 0n  Then Eqs.
(14.5.47) and (14.5.48) indicate that single scattering by spherical particles in the ex-
act backscattering direction produces light which is fully circularly polarized in the
clockwise sense with respect to the unit vector of the backscattering direction

.ˆˆ 0nn −=  This means that the backscattered signal is fully circularly polarized in the
anti-clockwise sense as viewed by an observer looking in the original incidence di-
rection .ˆ 0n  In the radar literature, this situation is usually characterized by saying that
there is no backscattering depolarization. In terms of the polarization definitions used
in this book, there is a complete switch in the sense of circular polarization for the
backscattered light.  Upon multiple scattering, both the circular polarization ratio Cµ
and the circular polarization ratio of the diffuse background diff

Cµ  can become non-
zero, resulting in partially polarized backscattered light. This phenomenon can be
called circular depolarization.
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Plate 14.6.6 shows that diff
Lµ  always decreases with increasing absorption. Ac-

cording to Eq. (14.5.44), the first-order-scattering contribution to diff
Lµ  in the case of

spherically symmetric particles is identically equal to zero. Therefore, the decrease of
diff
Lµ  with increasing Im  might be explained by a reduced diffuse multiple-scattering

matrix ).ˆ,ˆ( 00
M µµπR  However, this simple qualitative explanation does not quite

work in the case of diff
Cµ  (Plate 14.6.8), even though the first-order-scattering contri-

bution to diff
Cµ  is also equal to zero (Eq. (14.5.48)). Indeed, the diagrams for =Rm

1.2 and 1.4 in Plate 14.6.8 show that diff
Cµ  can first increase with increasing Im  and

then rapidly decreases. This different behavior of diff
Lµ  and diff

Cµ  with increasing
absorption can only be explained by the fact that different elements of the matrix

)ˆ,ˆ( 00
M µµπR  are involved and that the process of multiple scattering of polarized

light is extremely complex.
The numerical data displayed in Plates 14.6.6 and 14.6.8 cover a representative,

albeit restricted, range of effective size parameters and real and imaginary parts of the
relative refractive index. As such they may suggest that diff

Lµ  is always less than or
equal to one,

,1diff
L ≤µ      (14.6.1)

whereas diff
Cµ  is always greater than or equal to :diff

Lµ

.diff
C

diff
L µµ ≤      (14.6.2)

Unfortunately, we were unable to give a general analytical proof of these inequalities.
The full linear and circular polarization ratios Lµ  and Cµ  are shown in Plates

14.6.5 and 14.6.7, respectively, and are more similar to each other than the corre-
sponding diffuse ratios. In particular, the diagrams for =Rm  1.2 and 1.4 show that
both Lµ  and Cµ  can first increase with increasing absorption and then rapidly de-
crease.

Using formulas of Section 14.5, we can express the full polarization ratios in
terms of the diffuse polarization ratios and the enhancement factors as follows:

,diff
L

vv

hv
L µ

ζ
ζµ =      (14.6.3)

.diff
C

oh

hp
C µ

ζ
ζ

µ =      (14.6.4)

The enhancement factor hpζ  for spherical particles is identically equal to two,
whereas the enhancement factors ,vvζ ,hvζ  and ohζ  exhibit a rather complex depend-
ence on the effective size parameter and real and imaginary parts of the relative re-
fractive index. In view of Eqs. (14.5.21) and (14.5.45), we may conclude that the op-
posite-helicity enhancement factor is always smaller than or equal to the helicity-
preserving enhancement factor,

.hpoh ζζ ≤      (14.6.5)
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Equation (14.6.4) then implies that the effect of CB is always to increase (or at least
not to change) the circular polarization ratio:

.C
diff
C µµ ≤      (14.6.6)

In contrast, CB can either increase or decrease the linear polarization ratio depending
on the ratio of the cross-polarized to co-polarized enhancement factors. Plates 14.6.2
and 14.6.3 show that this ratio can be quite variable.

The computations displayed in Plates 14.6.5 and 14.6.7 may suggest that the ine-
quality (14.6.1) applies also to the full linear polarization ratio,

,1L ≤µ      (14.6.7)

and that Lµ  is always smaller than or equal to :Cµ

.CL µµ ≤      (14.6.8)

Again, it remains unclear whether these inequalities are general and can be proven
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Figure 14.6.3.  Backscattering enhancement factors for five values of the slab optical
thickness.
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analytically.
Figures 14.6.3 and 14.6.4 depict the backscattering enhancement factors and po-

larization ratios for finite and infinite homogeneous slabs consisting of polydisperse
spherical particles. The results were computed for a relative refractive index m = 1.5
and the power law size distribution (5.3.14) with an effective size parameter 15eff =x
and an effective variance =effv 0.1. One can see that all four polarization ratios de-
crease monotonically with decreasing T and obey the limit (14.5.51). Furthermore,
the polarization ratios satisfy the inequalities (14.6.1), (14.6.2), and (14.6.6)–(14.6.8).
The enhancement factors ,Iζ  ,vvζ  and ohζ  obey the limit (14.5.37), whereas the
cross-polarized enhancement factor hvζ  appears to tend to the value two as T  ap-
proaches zero. As T  decreases, the co-polarized enhancement factor monotonically
decreases and the cross-polarized enhancement factor monotonically increases. The
behavior of the unpolarized and opposite-helicity enhancement factors with decreas-
ing optical thickness is different from that of either vvζ  or :hvζ  they first increase,
reach a maximum, then start to decrease, and eventually vanish.
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Figures 14.6.5 and 14.6.6 compare the results for a semi-infinite slab composed of
the above spherical particles with those for a semi-infinite slab consisting of surface-
equivalent randomly oriented oblate spheroids. The ratio of the larger to the smaller
spheroid semi-axes is equal to 1.4. The most notable difference is that the helicity-
preserving enhancement factor for the spheroids deviates from the value two and, in
fact, tends to the value one in the limit .00 →µ  All five enhancement factors for the
spheroids satisfy the limit (14.5.32), whereas the polarization ratios satisfy the limits
(14.5.33) and (14.5.34) with Lδ ≈ 0.289 and Cδ ≈ 0.813. The inequalities (14.6.1),
(14.6.2), and (14.6.6)–(14.6.8) appear to be valid for nonspherical particles as well as
for spheres.

Thus, the above results show that the helicity-preserving enhancement factor can
be strongly affected by particle nonsphericity. One can expect, of course, that the ac-
tual deviation of hpζ  from the value two will depend on the degree of particle as-
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Figure 14.6.5.  Backscattering enhancement factors for homogeneous semi-infinite slabs
composed of randomly oriented polydisperse spheroids (solid curves) and surface-equivalent
spheres (dotted curves). The thick gray curve depicts the helicity-preserving enhancement
factor for the spheroids, whereas that for the spheres is identically equal to two.
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phericity and particle size parameter and relative refractive index as well as on the
optical thickness of the scattering slab. However, even the limited amount of numeri-
cal data shown in Fig. 14.6.5 suggests that the deviation of the helicity-preserving
enhancement factor from the value two observed experimentally by Wiersma et al.
(1995a) may be accounted for, at least partly, by the fact that the particles that formed
their scattering samples were nonspherical. The results of more extensive computa-
tions of hpζ  for polydisperse spheroids have recently been reported by Dlugach and
Mishchenko (2006).      

14.7 Angular profile of coherent backscattering

The approach described in Section 14.5 is quite general in that it allows accurate and
efficient computer calculations for a wide range of physical models specified in terms
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of slab optical thickness and particle size distribution, shape, and relative refractive
index. However, its major limitation is that it works only in the exact backscattering
direction as well as outside the range of reflection directions affected by CB. Conse-
quently, it does not allow one to determine the angular profile of specific manifesta-
tions of CB which may carry diagnostic information supplementary to that contained
in the enhancement factors and polarization ratios.

The general vector theory of CB is much more involved than the vector RTT (cf.
Tishkovets, 2002; Tishkovets et al., 2002; Tishkovets and Mishchenko, 2004) and is
still at an early stage of development and computer implementation. An approximate
vector theory of CB for the canonical case of Rayleigh scattering was developed by
Stephen and Cwilich (1986). Exact solutions of this problem have been obtained by
Ozrin (1992b) and Amic et al. (1997), but they are applicable only to a semi-infinite
homogeneous slab composed of nonabsorbing Rayleigh scatterers and illuminated by
light incident perpendicularly to the slab boundary. The exact scalar theory of CB is
much less complicated (Tsang and Ishimaru, 1985; Akkermans et al., 1988; van der
Mark et al., 1988; Gorodnichev et al., 1990; Ozrin, 1992a; Amic et al., 1996),
whereas the scalar diffusion approximation offers further simplifications and provides
easy-to-use closed-form analytical expressions (Akkermans et al., 1988; Barabanen-
kov and Ozrin, 1991). However, neither one can be applied directly to multiple scat-
tering of electromagnetic waves by discrete random media composed of realistic par-
ticles and cannot be used to compute polarization characteristics of CB. As usual, the
Monte Carlo technique (Iwai et al., 1995; Lenke and Maret, 2000a; Lenke et al.,
2002; Muinonen, 2004) provides a rather general recourse. However, it can be very
computer-intensive, especially for particles distributed over sizes, shapes, and/or ori-
entations.

We will not attempt here a comprehensive account of these solution approaches.
The interested reader can find detailed information in the publications cited above as
well as in the reviews by Barabanenkov et al. (1991), Kuz’min and Romanov (1996),
Lagendijk and van Tiggelen (1996), van Rossum and Nieuwenhuizen (1999), and
Lenke and Maret (2000a). The objective of this section is much more limited. Spe-
cifically, we will use the exact vector solution for a semi-infinite Rayleigh slab de-
rived by Amic et al. (1997) in order to illustrate the angular distribution of reflected
intensity and polarization in the vicinity of the exact backscattering direction and will
give a simple physical interpretation of these results.

Let us assume that a homogeneous semi-infinite slab composed of nonabsorbing
Rayleigh scatterers is illuminated by an unpolarized quasi-monochromatic beam inci-
dent perpendicularly to the slab boundary. Figure 14.7.1 depicts the corresponding
unpolarized backscattering enhancement factor )(qIζ  as a function of the dimen-
sionless so-called angular parameter q defined as

,1 αlkq =     (14.7.1)

where α  is the phase angle and l is the mean free path of light in the scattering me-
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dium. As before, the phase angle is defined as the angle between the unit vectors n̂
and ;ˆ 0n−  in this case it is equal to the polar angle of the reflection direction. The
mean free path is defined by

,1
ext0 ξ��

=
Cn

l     (14.7.2)

where, as before, 0n  is the particle number density and ξ�� extC  is the extinction cross
section per particle averaged over particle states. In other words, l is the geometrical
distance corresponding to a unit optical path-length.

Figure 14.7.1 demonstrates the renowned coherent intensity peak centered at ex-
actly the opposition. The amplitude of the peak is )0(Iζ  ≈ 1.537 (cf. Table 14.5.1)
and its half-width at half-maximum is II lkq HWHM,1HWHM, α= ≈ 0.597 (cf. Fig.
14.5.1). Thus the relationship between the half-width at half-maximum of the back-
scattering intensity peak and the mean free path for the case of conservative Rayleigh
scattering and unpolarized normal illumination is given by

IHWHM,α  ≈ .597.0
1lk

    (14.7.3)

The appearance of the dimensionless angular parameter q as the primary angular
variable in the theory of CB is not surprising. Indeed, let us consider two conjugate
light-scattering paths involving a group of N particles (Fig. 14.7.2). The phase differ-
ence between the path shown by the broken lines and that shown by the solid lines is

),ˆˆ( 011 nnR +⋅= Nk∆        (14.7.4)

where 11 rrR −= NN  is the vector connecting the origins of particles 1 and N. Since
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Figure 14.7.1.  Theoretical angular profile of the unpolarized backscattering enhancement
factor for a half-space of nonabsorbing Rayleigh particles illuminated by an unpolarized beam
of light incident normally to the boundary of the scattering medium. (After Mishchenko et al.,
2000c.)
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),2sin(2  |ˆˆ| 0 α=+ nn  we can estimate the size of the angular region where the two
light-scattering paths are fully or approximately coherent by requiring that ∆  be
smaller than about one:

ςα cos)2sin(||2 11 Nk R � 1,     (14.7.5)

where ς  is the angle between the vectors 1NR  and .ˆˆ 0 nn +  In a discrete random
medium, both N, |,| 1NR  and ς  are random variables. Therefore, taking into account
that α � 1, we can conclude that the angular size of the coherence region for the en-
tire medium can be found from HWHM1 αγ Lk ∼ 1, where L is an average distance be-
tween the end particles of a light-scattering path and γ  is a quantity of order one
which depends on such factors as type of particles, optical thickness of the medium,
incidence direction, and polarization state of incident and reflected light. Approxi-
mating L by the mean free path l finally yields

HWHMα  ∼ .1
1lkγ

    (14.7.6)

For nonabsorbing media composed of anisotropically scattering particles with
,0cos >�� Θ  a better approximation for L is the so-called transport mean free path

given by

��−
=

Θcos1tr
ll      (14.7.7)

(Amic et al., 1996).
As we have already seen, in the case of normal incidence of unpolarized incident

light, γ1  ≈  0.60. In the case of circularly polarized light,

hpHWHM,α  ≈ .34.0
1lk

    (14.7.8)

For linearly polarized incident light, the width of the co-polarized coherent peak

Nr

1−Nr
2r

0n̂n̂

…

1r

0n̂n̂

N1R

α

Figure 14.7.2.  Derivation of Eq. (14.7.5).
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depends on the azimuth angles of the incidence and reflection directions. For exam-
ple, if °= 00ϕ  then

°= 0vvHWHM, ϕ
α  ≈ ,65.0

1lk
    (14.7.9)

°= 90vvHWHM, ϕ
α  ≈ .48.0

1lk
  (14.7.10)

This azimuthal asymmetry has been observed experimentally (e.g., van Albada et al.,
1988) and will be discussed later in this section. The peak in the cross-polarized
channel is significantly wider:

°= 0hvHWHM, ϕ
α  ≈ .33.1

1lk
  (14.7.11)

The backscattering intensity peak in Fig. 14.7.1 has a characteristic triangular
vertex. The explanation of this shape is that light-scattering paths of increasing order
yield narrower peaks (cf. Eq. (14.7.5)). This is illustrated by the different curves in
Fig. 14.7.3 computed on the basis of the exact scalar theory of coherent backscatter-
ing by isotropically scattering particles (van der Mark et al., 1988). In a semi-infinite
medium composed of nonabsorbing scatterers, the cumulative contribution of all N th-
order scattering paths to the total intensity decreases rather slowly, as .23−N  As a
result, even the longest paths with infinitesimal angular widths keep raising the tip of
the backscattering peak so that it does not becomes rounded even at .0=α
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Figure 14.7.3.  Scalar enhancement factors in different scattering orders N of light reflected by
a homogeneous plane-parallel slab of optical thickness T  = 12. The slab is composed of
nonabsorbing, isotropically scattering particles and is illuminated by light incident normally to
the upper boundary of the slab. The thick gray curve shows the enhancement factor for the sum
of the scattering orders 2 through 80. (After Labeyrie et al., 2000.)
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It is evident from Fig. 14.7.3 that any factor leading to suppression of long multi-
ple-scattering paths must cause a rounded backscattering peak. This effect has indeed
been demonstrated experimentally for media with absorption )1( ≠ϖ  and finite opti-
cal thickness T( < ∞) (Etemad et al., 1987).

The signed degree of linear polarization of the reflected light is equal to minus the
ratio of the second element of the total reflected specific intensity column vector to
the total reflected specific intensity. In the case of unpolarized incident light,

.
)()()(
)()()(

)(~
)(~

)( C
11

M
11

1
11

C
21

M
21

1
21

qqq
qqq

qI
qQqPQ RRR

RRR
++
++−=−=   (14.7.12)

Both ),0(1
21R  ),0(M

21R  and )0(C
21R  vanish, the latter two quantities as a consequence

of azimuthal symmetry in the case of normal illumination and unpolarized incident
light. Furthermore, both ),(1

11 qR ),(M
11 qR ),(1

21 qR  and )(M
21 qR  change with reflection

direction much more slowly than )(C
11 qR  and )(C

21 qR  and, thus, can be neglected
within the range of reflection directions affected by CB. Consequently,

)(qPQ ≈ .
)()0()0(

)( C
11

M
11

1
11

C
21

q
q

RRR
R

++
−   (14.7.13)

This quantity is shown in Fig. 14.7.4. It is seen indeed that the reflected polarization
is zero at the exact backscattering direction. However, with increasing q, polarization
becomes negative, rapidly grows in absolute value, and reaches its minimal value

min,QP ≈ %765.2−  at a reflection direction very close to opposition (qP ≈ 1.68). The
peak of negative polarization is highly asymmetric so that the half-minimal polariza-
tion value –1.383% is first reached at qP,1 ≈ 0.498, which is even smaller than the
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Figure 14.7.4.  Theoretical angular profile of the signed degree of linear polarization of
the reflected light for a half-space of nonabsorbing Rayleigh particles illuminated by an
unpolarized beam of light incident normally to the boundary of the scattering medium.
(After Mishchenko et al., 2000c.)
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value IqHWHM, ≈ 0.597 corresponding to the half-width at half-maximum of the back-
scattering intensity peak, and then at a much larger qP,2 ≈ 7.10. This unusual behavior
of polarization at near-backscattering angles was called in Mishchenko (1993) the
polarization opposition effect (POE).

Because lasers are the most frequently used sources of illumination and usually
generate linearly or circularly polarized light, explicit laboratory demonstrations of
the POE have been rare. Apparently the first laboratory observation of the POE was
made by Lyot as long ago as in the 1920s (Lyot, 1929), although the physical origin
of this effect was, of course, unknown at that time. Figure 14.7.5 shows Lyot’s polari-
zation measurements for a particulate surface obtained by burning a tape of magne-
sium under a glass plate until the deposit on the plate was completely opaque. Lyot
described the observed phase curve of polarization as “puzzling” and attributed it to
the very small size of magnesia grains. Unfortunately, he did not measure the actual
size of the grains and their packing density and thus did not provide the information
necessary to compute the mean free path l. Furthermore, the minimal measured po-
larization value is only –1.11%, compared with the theoretical value min,QP ≈

%765.2−  computed for nonabsorbing Rayleigh particles. However, by assuming that
the latter difference is explained by the finite particle size in Lyot’s experiment, mul-
tiplying the theoretical polarization by a factor of 0.4, and assuming that the actual

lk1  was close to a realistic value of 132, Mishchenko et al. (2000c) were able to al-
most perfectly reproduce the angular profile of the measured polarization up to phase
angles of about 15° (solid curve in Fig. 14.7.5). At larger phase angles, the assump-
tion of negligible single-scattering and diffuse multiple-scattering contributions,

)(1
21 qR  and ),(M

21 qR  is no longer valid and causes a significant deviation of the theo-
retical curve from the measurements.
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Figure 14.7.5.  Polarization measurements for a particulate surface composed of microscopic
magnesia particles (squares) and best-fit theoretical results (solid curve). (After Mishchenko et
al., 2000c.)
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An unpolarized beam can be represented as a superposition of two linearly polar-
ized beams with orthogonal vibration directions of the electric field vector (Section
2.9). Therefore, it is easy to see that the POE has the same physical origin as the azi-
muthal asymmetry of the backscattering intensity peak in the case of linearly polar-
ized incident beam. Both effects appear to be a specific consequence of the Rayleigh
single-scattering law (see Tishkovets et al., 2002) and seem to disappear with in-
creasing particle size parameter (e.g., van Albada et al., 1988).

14.8 Further discussion of theoretical and practical
aspects of coherent backscattering

It is instructive at this point to recapitulate the assumptions and approximations made
in the unified microphysical theory of radiative transfer and coherent backscattering:

1. It is assumed that the scattering medium is illuminated by either: (i) one plane
electromagnetic wave; (ii) several plane electromagnetic waves with different
angular frequencies and arbitrary propagation directions; and/or (iii) one or
several quasi-monochromatic beams with arbitrary propagation directions.

2. It is assumed that each particle is located in the far-field zones of all the other
particles and that the observation point is also located in the far-field zones of
all the particles forming the scattering medium.

3. All scattering paths going through a particle two or more times are neglected
(the Twersky approximation).

4. It is assumed that the scattering system is ergodic and that averaging over
time can be replaced by averaging over particle positions and states.

5. It is assumed that: (i) the position and state of each particle are statistically
independent of each other and of those of all the other particles; and (ii) the
spatial distribution of the particles throughout the medium is random and sta-
tistically uniform.

6. It is assumed that: (i) the scattering medium is a plane-parallel layer of infi-
nite horizontal extent; and (ii) the observation point is located infinitely far
from the layer.

7. It is assumed that the number of particles N forming the scattering medium is
very large.

8. Only the ladder and maximally crossed diagrams are kept in the diagrammatic
expansion of the coherency dyadic.

9. It is assumed that the Saxon’s reciprocity relation (3.4.19) is valid.

Assumption 1 implies that the incident light is fully coherent across any plane
perpendicular to the incidence direction. The use of low-coherence or converging
incident beams may cause special effects studied in Tomita and Ikari (1991), Dogariu
and Boreman (1996), Okamoto and Asakura (1996), and Kim et al. (2005).
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Assumption 2 is, perhaps, the most critical in that it makes possible the characteri-
zation of the scattering properties of each particle in terms of its far-field scattering
dyadic and, thereby, allows the introduction of the very concept of ladder and maxi-
mally crossed diagrams. Thus this assumption as well as the Twersky approximation
are at the core of separating the total solution of the Maxwell’s equations for a sparse
discrete random medium into the radiative-transfer and coherent-backscattering com-
ponents.

Assumptions 4 and 5 are naturally realized for particle suspensions provided that
the measurement is taken over a sufficiently long period of time. However, experi-
ments involving particulate surfaces and coherent sources of illumination such as la-
sers require special care (Etemad et al., 1986; Kaveh et al., 1986). Indeed, as we have
seen in Section 1.4 and illustrate again in Fig. 14.8.1(a), a fixed particulate sample
generates a speckle pattern with frequent irregular oscillations of the reflected inten-
sity. To smooth out the speckle structure and separate the backscattering peak, one
needs to rotate or vibrate the sample and accumulate the signal over a significant pe-
riod of time (Fig. 14.8.1(b)).

Assumption 6(i) is by no means mandatory. However, it makes the theoretical
analysis much simpler, especially vis-à-vis the concept of angular profile of CB. To
estimate how far the observation point should actually be from the scattering slab, let
us assume that it lies on the straight line going through particle 1 and point A in Fig.
14.3.2. Then the requirement that the phase difference between the two reciprocal
paths going through particles 1 and 2 and arriving at the observation point D be much
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Figure 14.8.1.  (a) Typical plot of the angular distribution of backscattered specific intensity
for one configuration of a particulate sample.  (b) The angular distribution of backscattered
specific intensity after configurational averaging. (After Labeyrie et al., 2000.)
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smaller than one yields

 
22
)( 2

1

D
ACk � 1.

Thus, in general, the distance d from the scattering medium to the observation point
must satisfy the following inequality:

d  � ,2
tr12

1 lk     (14.8.1)

where trl  is the transport mean free path defined by Eq. (14.7.7). For an optically
semi-infinite medium composed of nonabsorbing, wavelength-sized or larger particles
with �� Θcos  close to one, the requirement (14.8.1) can be rather demanding.

The Saxon’s reciprocity relation is valid only in the far-field zone of a scatterer.
Therefore, assumption 9 reinforces the main implication of assumption 2 according to
which the very concept of CB can be directly applied to discrete random media only
if the scattering particles are distributed sparsely.

The reciprocity relation becomes invalid if the scatterers and/or the host medium
are made of naturally optically active materials or consist of magneto-optic materials
and are subject to an external magnetic field (see, for example, the review by Potton,
2004). The natural optical activity and magnetic-field effects on CB have been stud-
ied both experimentally and theoretically in Golubentsev (1984), MacKintosh and
John (1988), Martinez and Maynard (1994), van Tiggelen et al. (1996), Lacoste and
van Tiggelen (2000), Lenke and Maret (2000b), and Lenke et al. (2000).

One theoretical problem that still awaits its solution is energy conservation. As we
have seen in Section 8.13, the RTE ensures energy conservation by itself. Including
the maximally crossed diagrams appears to destroy energy conservation by adding the
energy contained in the coherent backscattering peak. It remains unclear whether this
additional energy is “taken” from the far wings of the backscattering peak, which
would imply that the contribution of the maximally crossed diagrams to the specific
intensity at certain reflection directions may be negative.

14.9 Applications and further reading

The theory of CB and its applications are extensively discussed in the books edited by
Sheng (1990), Fouque (1999), Sebbah (2001), and van Tiggelen and Skipetrov
(2003). The effect of CB has been the basis of various optical characterization tech-
niques and has been observed for various types of scatterers and scattering media in-
cluding biological tissues (Yoo et al., 1990; Yoon et al., 1993; Kim et al., 2005), ran-
domized laser materials (Wiersma et al., 1995b), nematic liquid crystals (Kuzmin et
al., 1996; Sapienza et al., 2004), industrial materials (Schirrer et al., 1997), atoms
(Labeyrie et al., 1999; Jonckheere et al., 2000; Labeyrie et al., 2000; Müller et al.,
2001), and photonic crystals (Koenderink et al., 2000; Huang et al., 2001).
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Owing to its small angular width, the effect of CB is rather difficult to observe and
measure. Yet it is often considered to be a precursor to an even more elusive effect
called strong localization of light (Genack and Garcia, 1991; Wiersma et al., 1997;
Scheffold et al., 1999; Wiersma et al., 1999; Chabanov and Genack, 2003).

One of the more exotic manifestations of CB can be found in planetary astro-
physics. Shkuratov (1988, 1989) and Muinonen (1990) were the first to suggest that
CB might be responsible for some of the optical effects exhibited by atmosphereless
solar system bodies at small and moderate phase angles. As an example, Fig. 14.9.1
shows the observed brightness of one of the large satellites of Jupiter, Europa, as a
function of phase angle. These ground-based telescopic data as well as those collected
from the Galileo spacecraft (Helfenstein et al., 1998) clearly indicate the presence of
an anomalously narrow backscattering peak centered at exactly the opposition. Simi-
larly narrow intensity peaks have been observed for Saturn’s A and B rings (Franklin
and Cook, 1965), large satellites of Uranus and Neptune (Goguen et al., 1989), and
asteroids 44 Nysa and 64 Angelina (Harris et al., 1989). All these objects have very
high albedos and are believed to be covered with a layer of very small, weakly ab-
sorbing ice and/or silicate particles. Amazingly, the polarimetric phase curve for Eu-
ropa exhibits a spike of negative polarization at a phase angle smaller than 1° (Fig.
14.9.2) which closely resembles the POE caused by CB. A similar feature has been
observed for Saturn’s rings (see Mishchenko, 1993 and references therein), for other
Galilean satellites of Jupiter (Rosenbush and Kiselev, 2005), and for the high-albedo
asteroid 64 Angelina (Rosenbush et al., 2005). The angular characteristics of these
intensity and polarization features are such that it may be impossible to reproduce
them with an optical mechanism other than CB (Mishchenko and Dlugach, 1992b,
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Figure 14.9.1.  The brightness opposition effect for Europa (after Thompson and Lockwood,
1992).



Chapter 14406

1993; Mishchenko, 1993; Rosenbush et al., 1997), even though the formal applicabil-
ity of the latter to densely distributed particles may be questionable.

Monostatic radars use the same antenna to transmit and receive electromagnetic
waves. Therefore, radar measurements of particulate media are inevitably affected by
CB. Several solar system objects have been found to generate radar returns quite un-
characteristic of bare solid surfaces (Ostro, 1993). For example, the icy Galilean sat-
ellites of Jupiter exhibit both high radar reflectivities and circular polarization ratios
exceeding one. These measurements have been interpreted in terms of multiple
scattering, including CB, of electromagnetic waves by voids or rocks imbedded in a
transparent layer of ice (Hapke, 1990; Mishchenko, 1992b, 1996).

What is perhaps the most unexpected, unusually strong and highly depolarized
echoes have been detected in radar observations of Mercury’s poles (Harmon et al.,
1994). The fact that these echoes come from areas associated with deep craters pro-
vides a strong support for the hypothesis that water ice may have survived in perma-
nently shadowed polar areas of Mercury despite the extreme proximity of this planet
to the sun. Nozette et al. (2001) suggested that bistatic radar observations of the moon
using the Clementine spacecraft may indicate the presence of similar deposits of ice at
lunar poles.
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Figure 14.9.2.  The polarization opposition effect for Europa (after Rosenbush et al., 2002).
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Appendix A

Dyads and dyadics

The result of a dyadic operating on a vector is another vector. This operation may be
thought of as a 33×  matrix representing the dyadic multiplying a column matrix con-
sisting of the initial vector components, thereby producing another column matrix
consisting of the resulting vector components. The components of both vectors must
be specified in the same coordinate system.

From another, coordinate-free, standpoint a dyadic can be introduced as a sum of
so-called dyads, each dyad being the result of a dyadic product of two vectors ba⊗
such that the operation cba ⋅⊗ )(  yields the vector )( cba ⋅  and the operation

)( bac ⊗⋅  yields the vector .)( bac ⋅  Note that the sum of two dyads is not necessar-
ily a dyad. Any dyadic can be represented as a sum of at most nine dyads. For exam-
ple, in Cartesian coordinates any dyadic A

�

 can be expressed as

zxyxxx ˆˆˆˆˆˆ       ⊗+⊗+⊗= xzxyxx AAAA
�

       ˆˆˆˆˆˆ zyyyxy ⊗+⊗+⊗+ yzyyyx AAA
     ,ˆˆˆˆˆˆ zzyzxz ⊗+⊗+⊗+ zzzyzx AAA     (A.1)

where ,x̂  ,ŷ  and ẑ  are the unit vectors along the x-, y-, and z-axis, respectively, and
the coefficients ijA  can be thought of as the elements of the matrix representing the
dyadic.

The vector product cba ×⊗ )(  is defined as a dyad ),( cba ×⊗  and )( bac ⊗×
yields .)( bac ⊗×  The dot product of two dyads ba⊗  and dc⊗  yields the dyad

).)(( dacb ⊗⋅
The transpose of a dyadic A

�

 is a dyadic TA
�

 such that
T    AA

��

⋅=⋅ aa

for any a. One may easily verify that transposing a dyadic is equivalent to transposing
the matrix representing the dyadic in a coordinate system. Obviously,
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AA
��

= )( TT

and

.    T aa ⋅=⋅ AA
��

A dyadic A
�

 is symmetric if

AA
��

= T

and is Hermitian if

. T ∗= AA
��

It is straightforward to show that

,    )(    )( bababa ⋅⋅=⋅⋅=⋅⋅ AAA
���

  (A.2)

,    )(    )( BABABA
������

⋅⋅=⋅⋅=⋅⋅ aaa   (A.3)

,    )(    )( aaa ⋅⋅=⋅⋅=⋅⋅ BABABA
������

  (A.4)

,    )(    )( CBACBACBA
���������

⋅⋅=⋅⋅=⋅⋅   (A.5)

,    T abba ⋅⋅=⋅⋅ AA
��

  (A.6)

,  )( TTT ABBA
����

⋅=⋅   (A.7)

.)(    )()( TBABA
����

⋅⊗⋅=⋅⊗⋅ baba   (A.8)

The identity dyadic I
�

 is defined by the relations

aaa         =⋅=⋅ II
��

  (A.9)

for any a. As a consequence,

AIAAI
�����

        =⋅=⋅    (A.10)

for any .A
�

 Obviously,

zzyyxx ˆˆˆˆˆˆ    ⊗+⊗+⊗=I
�

    (A.11)

in Cartesian coordinates and

φφθθrr ˆˆˆˆˆˆ    ⊗+⊗+⊗=I
�

   (A.12)

in spherical polar coordinates, where ,r̂  ,θ̂  and φ̂  are the corresponding unit vectors.
A useful compendium of formulas from dyadic algebra and dyadic analysis can be

found in Appendix 3 of Van Bladel (1964).
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Appendix B

Spherical wave expansion of a plane wave
in the far-field zone

In this appendix we derive Eq. (3.4.15) following the approach described by Saxon
(1955b). We begin with the well-known expansion of a plane wave in scalar spherical
harmonics (Jackson, 1998, p. 471):
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��
�

�
��
�

�
��
�

�
��
�

�
−=

y
y

yy
yyj

l
l

l
sin

d
d 1      )(    (B.2)

are spherical Bessel functions of the first kind, and )ˆ(rlmY  are scalar spherical har-
monics. The latter are defined as
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)!)(12(    )ˆ( ϕθ
π

mP
ml
mllY m

llm +
−+=r    (B.3)

where θ  and ϕ  are spherical angular coordinates of the unit vector r̂  and the m
lP

are associated Legendre functions defined in terms of Legendre polynomials lP  as
follows:
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with ].1  ,1[    −∈x  Using the asymptotic form (Arfken and Weber, 2001, p. 726),
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we have
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Substituting this expression in Eq. (B.1) and making use of the completeness relation
for spherical harmonics (Jackson, 1998, p. 108)
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and the symmetry relation
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we finally derive, after simple algebra,
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where

)(δ)cos(cosδ    )ˆˆ(δ ϕϕθθ ′−′−=′− rr       (B.11)

is the solid-angle delta function.
A direct consequence of Eq. (B.10) is the so-called Jones’ lemma (see, for exam-

ple, Appendix XII of Born and Wolf, 1999), which states the following:

)],iexp()ˆ()iexp()ˆ([i2)ˆiexp()(d 1 kRRfkRRf
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R kRS

nnrnr −−−=⋅
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π

 (B.12)

where S is the surface of a sphere centered at the origin, R is the sphere radius, the
position vector r connects the origin and a point on the surface, )(rf  is a “well-
behaved” function of the position vector, and n̂  is a constant unit vector.
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Appendix C

Euler rotation angles

Consider right-handed Cartesian coordinate systems },,{ zyx  and },,{ zyx ′′′  having a
common origin. It is often convenient to specify the orientation of the coordinate
system } , ,{ zyx ′′′  relative to the coordinate system },,{ zyx  in terms of three Euler
rotation angles ,α ,β  and γ  which transform the coordinate system } ,,{ zyx  into the
coordinate system }, , ,{ zyx ′′′  as shown in Fig. C.1. Specifically, the three consecu-
tive Euler rotations are performed as follows:

● Rotation of the coordinate system },,{ zyx  about the z-axis through an angle
),2 ,0[    πα ∈  reorienting the y-axis in such a way that it coincides with the

line of nodes (i.e., the line formed by the intersection of the xy- and the
).plane-yx ′′

Line of nodes
y

x′

y′

z′

α
βγ

z

x
β

Figure C.1.  Euler angles of rotation ,α ,β  and γ  transforming the coordinate system
} , ,{ zyx  into the coordinate system }. , ,{ zyx ′′′
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● Rotation about the new y-axis through an angle ].,0[  πβ ∈
● Rotation about the axis-z′ through an angle ).2,0[  πγ ∈

An angle of rotation is positive if the rotation is performed in the clockwise direction
when one is looking in the positive direction of the rotation axis.
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Appendix D

Integration quadrature formulas

Practical numerical evaluation of definite integrals is often based on using one of the
so-called quadrature formulas. Assume, for example, that one needs to compute nu-
merically the integral

),(d    
  

  
xfxI

b

a
=   (D.1)

where )(xf  is a real-valued function. The simplest approach is to use the (extended)
trapezoidal rule
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where

1
))(1(     

−
−−+=

N
abnaxn   (D.3)

are the equidistant so-called division points such that ax =1  and .bxN =  By increas-
ing the number of division points N, the result can be made arbitrarily accurate. How-
ever, this can lead to a rapid increase in computer time.

Usually a much more accurate and fast result can be obtained by using so-called
quadrature formulas of the highest algebraic degree of precision (Krylov, 1962; Press
et al., 1992). Perhaps the most important example is the Gauss quadrature formula,
which reads

)(d
1  

1  
xfx

−
 ≈ ),(

1

nn

N

n

xfw
=

  (D.4)

where the nth quadrature division point nx  is the nth zero of the Nth degree Legendre
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polynomial )(xPN  defined by Eq. (B.5), and the quadrature weights nw  are given by

.
)]()[1(

2    22
nNn

n xPx
w

′−
=   (D.5)

The Gauss quadrature formula is exact for all functions that can be represented by a
polynomial of degree smaller than or equal to .12 −N  Substituting 1)( ≡xf  yields a
useful numerical check on the quadrature weights:

.2    
1

=
=

n

N

n

w   (D.6)

As an illustration, Table D.1 lists the Gaussian division points and weights for N =
9. Notice that 1+−−= nNn xx  and 1+−= nNn ww  so that the middle division point of
the Gauss quadrature of any odd order is always zero.

The Gauss formula for an arbitrary integration interval ],[ ba  follows from Eq.
(D.4):
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  (D.7)

where the corresponding division points and weights are now given by

,
22

    abxaby nn
++−=   (D.8)

. 
2

    nn wabu −=   (D.9)

For given a, b, and N, the division points of the Gauss quadrature are chosen

Table D.1.  Gaussian division points and weights for N = 9.

n         n     x                n          w

1          –0.968160239507626           0.081274388361574
2          –0.836031107326636           0.180648160694857
3          –0.613371432700590           0.260610696402935
4          –0.324253423403809           0.312347077040003
5            0.000000000000000           0.330239355001260
6            0.324253423403809           0.312347077040003
7            0.613371432700590           0.260610696402935
8            0.836031107326636           0.180648160694857
9            0.968160239507626           0.081274388361574
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automatically so that the formula is exact for polynomials of the highest possible de-
gree. As a consequence, one has no direct control over the exact location of the divi-
sion points, the middle division point 2)( ab +  for an odd N being the only excep-
tion. However, it is often convenient to have an integration formula that has one or
more prescribed division points and still provides the highest possible degree of preci-
sion. If the number of prescribed division points is M and the total number of points is
N then this so-called Markov quadrature formula (Krylov, 1962) is exact for all poly-
nomials of degree smaller than or equal to 12 −− MN . The Markov quadrature with

1=M  and ax =1  is often called the Radau formula, whereas that with ,2=M
,1 ax =  and bxN =  is called the Lobatto formula. As an example, Table D.2 lists the

division points and weights for the Markov quadrature formula on the interval [–1, 1]
with 9=N  and one prescribed division point .19 =x

Tables D.1 and D.2 were computed using FORTRAN subroutines GAUSS and
MARK included in the code refl.f available at http://www.giss.nasa.gov/~crmim/brf/.

Table D.2.  Division points and weights of the Markov
quadrature formula on the interval [–1, 1] with  N = 9
and one prescribed division point 19 =x .

n nx nw

1          –0.964440169705273           0.090714504923282
2          –0.817352784200412           0.200553298024552
3          –0.571383041208738           0.286386696357232
4          –0.256135670833455           0.337693966975930
5            0.090373369606853           0.348273002772967
6            0.426350485711139           0.316843775670438
7            0.711267485915709           0.247189378204593
8            0.910732089420060           0.147654019046315
9            1.000000000000000           0.024691358024692
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Appendix E

Stationary phase evaluation of a double integral

Consider the double integral
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21

  

  

  

  rr
yxfyxAyxI

∞+

∞−

∞+

∞−
=   (E.1)

where

),(),( 21 rrkyxf +=      (E.2)

,222
1 zyxr ++=      (E.3)

.)( 222
2 zZyxr −++=   (E.4)

The exponential )],(iexp[ yxf  is a rapidly oscillating function everywhere except in
the region in which ),( yxf ≈ constant. Therefore, if ),( yxA  is a slowly varying
function of x and y then the only significant contribution to I arises from the nearest
vicinity of the stationary phase point determined from
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and given by 0=x  and .0=y  Expanding ),( yxf  in a Taylor series about this
point, we have
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Finally, approximating

),( yxA  ≈ ),0 ,0(A   (E.7)

21

1
rr

 ≈ ,
||||

1
zZz −

  (E.8)

substituting Eq. (E.6) in Eq. (E.1), and taking into account that
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Appendix F

Wigner functions, Jacobi polynomials, and
generalized spherical functions

Jacobi polynomials, Wigner functions, and generalized spherical functions are closely
related special functions which were introduced in classical analysis (Szegő, 1959),
quantum theory of angular momentum (Wigner, 1959), and the theory of representa-
tions of the rotation group (Gelfand et al., 1963), respectively. Because differences in
notational conventions in various publications may often lead to confusion, we give in
this appendix a short consistent summary of the main properties of these functions
and their relationships.

F.1      Wigner d-functions

Wigner d-functions are defined as

)!()!()!()!()( nsnsmsmsd s
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−×
+−−+− θθ

(F.1.1)

where  s, m, and n are integers, ,0 πθ ≤≤  and the sum is taken over all integer val-
ues of k that lead to nonnegative factorials. Thus the summation index runs from

),0max(min nmk −=  to ).,min(max nsmsk −+=  Therefore, 0)( =θs
mnd  unless

,minmax kk ≥  which is equivalent to requiring that 0≥s  and ., snms ≤≤−  By
making the substitutions ,knsk −−→  ,kmsk −+→  and ,knmk +−→  re-
spectively, we derive the following alternative expressions:
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As follows from the definition (F.1.1), the d-functions are real. It is also straight-
forward to verify, using Eqs. (F.1.1)–(F.1.4), that they have the following symmetry
properties:
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Furthermore,
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where mnδ  is the Kronecker delta:
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Indeed, a nonzero term in the summation on the right-hand side of Eq. (F.1.1) must
correspond to ,2 nmk −=  while the requisite nonnegativity of kmn +−  implies
that .mn ≥  However, having mn >  would yield a negative k, which is disallowed.
We thus have mn =  and ,0=k  which leads to Eq. (F.1.8). Equations (F.1.7) and
(F.1.8) imply that
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Denoting θcos=x  and requiring that ],0[ πθ ∈  yields
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Substituting Eq. (F.1.11) in Eq. (F.1.1) and modifying the resulting formula, we ob-
tain
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Finally, recalling the Leibniz rule,
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and applying it to ,)1()( msxxf ++=  ,)1()( msxxg −−=  and nsN −=  we can
rewrite Eq. (F.1.12) in the form
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Figure F.1.1.  Wigner d-functions.
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Figure F.1.1 and Table F.1.1 illustrate the d-functions used in the expansions
(11.11.1)–(11.11.6).

F.2      Jacobi polynomials

The Jacobi polynomial of degree q is given by Eq. (4.3.1) of Szegő (1959):
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where q is a nonnegative integer and 1−>a  and 1−>b  are real. Comparing Eq.
(F.1.15) with Eq. (F.2.1), we obtain the following expression of the Wigner d-
functions in terms of the Jacobi polynomials for |:|mn ≥
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where , ,  , nsqmnbmna −=+=−=  and .1=mnξ  The condition ||mn ≥  en-
sures that 0≥a  and ,0≥b  thereby preventing singularities for .1±=x  Using the
symmetry relations (F.1.5), it is straightforward to show that Eq. (F.2.2) can be used
for arbitrary m and n, provided that
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F.3      Orthogonality and completeness

The orthogonality property of the Jacobi polynomials (Eq. (4.3.3) of Szegő, 1959) and
Eqs. (F.2.2)–(F.2.4) lead to the following orthogonality property of the d-functions:
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The completeness property of the Jacobi polynomials (Szegő, 1959) and Eqs. (F.2.2)
and (F.3.1) imply that functions )(2

1 θs
mnds +  with �,1, minmin += sss  form a

complete orthonormal system of functions on ],,0[ π  where

|).||,max(|min nms = (F.3.2)

This means that if a real-valued function )(θf  defined on the closed interval ],0[ π
is square integrable on this interval, i.e., if
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then there exists a unique set of coefficients sη  )( minss ≥  such that the series expan-
sion
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holds in the following sense:
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Conversely, if a real-valued function )(θf  on ],0[ π  admits the expansion (F.3.4) in
the sense of Eq. (F.3.5), then it is square integrable on ],0[ π  and the expansion coef-
ficients are given by
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π
s
mns dfs += (F.3.6)

The latter formula follows directly from Eqs. (F.3.4) and (F.3.1).

F.4      Recurrence relations

Using Eq. (4.5.1) of Szegő (1959) and Eq. (F.2.2), we obtain the following recurrence
relation for the Wigner d-functions:
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The simplest way to derive this formula is to consider first the case |,|mn ≥  which
corresponds to , ,  , nsqmnbmna −=+=−=  and then to use the symmetry re-
lations (F.1.5) in order to verify that Eq. (F.4.1) is correct for arbitrary m and n. The
initial values are given by
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where mnξ  is given by Eq. (F.2.4). Equation (F.4.3) follows directly from Eq. (F.1.15)
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if |,|mn ≥  and it is extended to arbitrary m and n using Eq. (F.1.5). From Eq.
(F.1.15), we easily derive
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Alternatively, we have from Eq. (4.5.5) of Szegő (1959) and Eq. (F.4.1)
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F.5      Legendre polynomials and associated Legendre
functions

The Wigner d-functions with 0=m  and 0=n  are equivalent to the usual Legendre
polynomials (cf. Eqs. (F.1.15) and (B.5)):

).()(00 xPd s
s =θ (F.5.1)

For ,0=n  we obtain
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s
s
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where )(xPm
s  are associated Legendre functions defined by Eq. (B.4). Equations

(F.4.1) and (F.5.2) give a simple recurrence relation for the associated Legendre
functions:

).()()()12()()1( 11 xPmsxPxsxPms m
s

m
s

m
s −+ +−+=+− (F.5.3)

Despite its simplicity, the use of this relation in computer calculations for large s and
||m  results in overflows, whereas the original recurrence relation for the functions

)(0 θs
md  remains stable and accurate.  Furthermore, the functions )(0 θs

md  have simpler
symmetry properties than the ).(xPm

s  It is, therefore, advisable to use the d-functions
instead of the associated Legendre functions from both the analytical and the numeri-
cal standpoint.
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F.6      Generalized spherical functions

The generalized spherical functions )(xPs
mn  are complex-valued functions related to

the Wigner d-functions by

).(i)( θs
mn

nms
mn dxP −= (F.6.1)

Using Eqs. (F.1.5)–(F.1.7), we easily derive the following symmetry relations:
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The corresponding orthogonality and normalization condition follows directly from
Eq. (F.3.1):
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It is straightforward to show that the generalized spherical functions form a complete
set of complex functions on the interval ].1,1[ +−∈x  This means that any complex-
valued function ),(xf  defined and square-integrable on the interval ],1,1[ +−∈x
can be uniquely expanded in the functions )(xPs

mn  with �,1, minmin += sss  In other
words, if

<
+

−

2
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then there exists a unique set of coefficients sη  )( minss ≥  such that
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Conversely, if a complex-valued function )(xf  on ]1,1[ +−  admits the expansion
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in the sense of Eq. (F.6.6), then it is square integrable on ]1,1[ +−  and the expansion
coefficients are given by
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(cf. Eqs. (F.6.4) and (F.6.7)).
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F.7      Wigner D-functions, addition theorem, and unitarity

The Wigner D-functions are defined as

,e)(e),,( ii γα βγβα mn
mm

mn
mm dD ′−

′
−

′ = (F.7.1)

where

.20        ,0        ,20 πγπβπα <≤≤≤<≤ (F.7.2)

If the sets of Euler angles ),,( 111 γβα  and ),,( 222 γβα  (Appendix C) describe two
consecutive rotations of a coordinate system and the set ),,( γβα  describes the re-
sulting rotation, then the addition theorem for the D-functions reads
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(see Eq. (2) in Section 4.7 of Varshalovich et al., 1988). A direct consequence of the
addition theorem is the unitarity condition
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(cf. Eq. (F.1.8)).
Using Eq. (F.7.3), we can derive the addition theorem for the Wigner d-functions.

Consider the geometry shown in Fig. F.7.1, where the angles ,1θ ,2θ ,12 ϕϕ − ,1σ ,2σ

1σ

2σ

y

x

z

2n̂

1n̂
Θ

2

2
1

2

12 ϕϕ −

ϕ̂

1ϕ̂

1

θ

θ

θ̂

θ̂

Figure F.7.1.  Illustration of the addition theorem for Wigner d-functions.
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and Θ  are nonnegative and are related by
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(cf. Eqs. (11.3.4)–(11.3.6)). The reference frame formed by the unit vectors
)ˆ,ˆ,ˆ( 111 ϕθn  can be transformed into the reference frame formed by the unit vectors

)ˆ,ˆ,ˆ( 222 ϕθn  in two ways:

● Via a single rotation through Euler angles ).,,( 21 σΘσπ −−
● Via two consecutive rotations through Euler angles ),,0( 121 ϕϕθ −−  and

).0,,0( 2θ

We, therefore, derive from Eqs. (F.7.1) and (F.7.3)
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Consider two special cases of Eq. (F.7.8). If 012 =− ϕϕ  and 21 θθ ≥  then
,01 =σ  ,2 πσ =  and .21 θθΘ −=  We thus obtain
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In particular, when ,21 θθ =  Eqs. (F.1.8) and (F.7.9) yield the unitarity condition for
the d-functions:
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This formula can also be derived directly from the unitarity condition for the D-
functions, Eq. (F.7.4), by substituting .0== γα  If ,12 πϕϕ =−  then == 21 σσ
0 and ,21 θθΘ +=  and we have
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Equation (F.7.10) yields
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which implies that
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F.8      Further reading

Detailed accounts of Jacobi polynomials, Wigner d-functions, and generalized spheri-
cal functions are given in Rose (1957), Szegő (1959), Gelfand et al. (1963), Vilenkin
(1968), Biedenharn and Louck (1981), Varshalovich et al. (1988), Brink and Satchler
(1993), and Edmonds (1996). Our definition of the d-functions is consistent with that
of Rose (1957), Biedenharn and Louck (1981), Hovenier and van der Mee (1983),
Varshalovich et al. (1988), and Brink and Satchler (1993). Vilenkin (1968) uses
functions )(xPs

mn  related to the Wigner d-functions by ).(i)( θs
mn

mns
mn dxP −=

Edmonds (1996) uses a function )()( θs
mnd  which is related to )(θs

mnd  by )()( θs
mnd

).()1( θs
mn

nm d+−=
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Appendix G

Système International units

The system of physical units adopted in this book is the internationally accepted form
of the metric system known as the Système International (SI). The SI is formed by
base units, supplementary units, and units derived from the base units. The table be-
low lists only those derived SI units that are used in this book.

Base units
   length meter m

time second s
mass kilogram kg
electric current ampere A
temperature kelvin K
amount of substance mole mol

Supplementary units
plane angle radian rad
solid angle steradian sr

Derived units
energy joule J 22 smkgmN −=
electric charge coulomb C sA 
electric potential volt V 1321 A s mkgAW −−− =
electric capacitance farad F 24211 A s mkgVC −−− =
electric resistance ohm Ω 2321 A smkgAV −−− =
magnetic flux weber Wb 122 A smkgsV −−=
inductance henry H 2221 A s mkgAWb −−− =

==============================================================================================
Quantity Unit Symbol Definition
==============================================================================================
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frequency hertz Hz 1s−

power watt W 321 smkgsJ −− =
 force newton N 2smkg −

==============================================================================================
Quantity Unit Symbol Definition
==============================================================================================

==============================================================================================
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Appendix H

Abbreviations

ADA anomalous diffraction approximation 9.2
CB coherent backscattering 1.8
DDA discrete dipole approximation 9.1
DWS diffusing wave spectroscopy 1.4
EBCM extended boundary condition method 9.1
FDTDM finite-difference time-domain method 9.1
FEM finite-element method 9.1
FIEM Fredholm integral equation method 9.1
FOSA first-order-scattering approximation 7.7
GOA geometrical optics approximation 9.2
GPMM generalized PMM 9.1
HG Henyey–Greenstein (phase function) 13.2
ISM macroscopically isotropic and mirror- Introduction

symmetric scattering medium to Chapter 11
KA Kirchhoff approximation 9.2
LDM laser Doppler method 1.10
ME-GPMM multiple-expansion GPMM 9.1
MOM method of moments 9.1
MTL Mishchenko et al. (2002) Preface
MUSSA modified uncorrelated single-scattering

approximation 7.3
OCT optical coherence tomography 1.10

==============================================================================================
Abbreviation Definition Introduced

in Section
==============================================================================================



Appendix H432

PCS photon correlation spectroscopy 1.4
PMM point-matching method 9.1
POE polarization opposition effect 14.7
RGA Rayleigh–Gans approximation 3.1
RTE radiative transfer equation Preface
RTT radiative transfer theory Preface
SM superposition method 9.1
SSA single-scattering approximation 7.1
SVM separation of variables method 9.1
TMM T-matrix method 9.1
USSA uncorrelated single-scattering approximation 7.3
VIEM volume integral equation method 9.1
VRTE vector RTE 8.10
VSWF vector spherical wave function 9.1
==============================================================================================

==============================================================================================
Abbreviation Definition Introduced

in Section
==============================================================================================
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Appendix I

Glossary of symbols

This glossary lists the most important symbols whose specific definitions may not
appear in their immediate context. Each entry gives the physical dimension of the
corresponding quantity (if applicable) as well as the section in which the symbol is
defined.

 English symbols

4...,,1),( =ja j Θ diagonal elements of the normalized Stokes
scattering matrix [–] 11.10

 A 44×  transformation matrix [–] 2.6
A
�

scattering dyadic [m] 3.3
ξ��A

�

scattering dyadic averaged over particle states
[m] 8.2

2,1),( =jb j Θ off-diagonal elements of the normalized Stokes
scattering matrix [–] 11.10

 B complex magnetic induction [Wb m–2] 2.3
 B 44×  transformation matrix [–] 2.6
 B magnetic induction [Wb m–2] 2.1
B
�

dimensionless scattering dyadic [–] 8.1
 c speed of light in a vacuum [m s–1] 2.5

absC absorption cross section [m2] 3.9
extC extinction cross section [m2] 3.6
scaC scattering cross section [m2] 3.9

C
�

coherency dyadic [V2 m–2] 1.7

==============================================================================================
 Symbol Definition and dimension in SI units Introduced

in Section
==============================================================================================
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1C
�

single-scattering component of the coherency
dyadic [V2 m–2] 14.1

cC
�

coherent part of the coherency dyadic [V2 m–2] 8.6

CC
�

cyclical component of the coherency dyadic Introduction
[V2 m–2] to Chapter 14

LC
�

ladder component of the coherency dyadic
[V2 m–2] 8.6

MC
�

diffuse multiple-scattering component of the
coherency dyadic [V2 m–2] 14.1

�� Θcos asymmetry parameter [–] 3.9
ξ�� absC absorption cross section per particle averaged

over particle states [m2] 7.3
ξ�� extC extinction cross section per particle averaged

over particle states [m2] 7.3
ξ�� scaC scattering cross section per particle averaged

over particle states [m2] 7.3
 d differential sign

)(θs
mnd Wigner d-functions [–] Appendix F

 D diameter of the sensitive surface of a detector
[m] 3.6

 D complex electric displacement [C m–2] 2.3
 D 44×  transformation matrix [–] 2.6
 D 44×  matrix describing internal radiation

field [–] 10.3
D electric displacement [C m–2] 2.1

†D 44×  matrix describing internal radiation
field [–] 10.3

 e base of natural logarithms [–]
 E complex electric field [V m–1] 1.1
 E two-component column formed by the -θ

and components-ϕ of the electric field vector
[V m–1] 3.3

 E electric field [V m–1] 1.1
cE coherent electric field [V m–1] 8.2
cE two-component column of the coherent

electric field [V m–1] 8.3
ϕθ EE  , spherical coordinate components of the

electric field vector [V m–1] 2.6

==============================================================================================
 Symbol Definition and dimension in SI units Introduced

in Section
==============================================================================================
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 F 44×  Stokes scattering matrix [m2] Introduction
to Chapter 11

F~ 44×  normalized Stokes scattering matrix [–] 11.10
CP~F 44×  normalized circular-polarization scattering

matrix [–] 11.12
CP~
pqF elements of the normalized circular-polarization

scattering matrix [–] 11.12
ξ��F 44×  Stokes scattering matrix per particle

averaged over particle states [m2] 11.1
ξ�� ijF elements of the Stokes scattering matrix per

particle averaged over particle states [m2] 11.1
s
pqg expansion coefficients [–] 11.12

)(rG scalar Green function [m–1] 4.2
G
�

free space dyadic Green function [m–1] 3.1
 h 22×  coherent transmission amplitude matrix

[–] 8.3
 H complex magnetic field [A m–1] 1.1
 H 44×  coherent transmission Stokes matrix [–] 8.4
 H magnetic field [A m–1] 1.1
 i 1−  [–] 1.1
 I intensity [W m–2] 2.5
 I first Stokes parameter [W m–2] 2.6
 I 14×  Stokes column vector [W m–2] 2.6
 Im imaginary part 

2002  , , , IIII − elements of the circular-polarization column
vector [W m–2] 2.6

bI Planck blackbody energy distribution
[W m–2 sr–1 rad–1 s] 3.13

hv  , II first and second elements of the modified
Stokes column vector [W m–2] 2.6

I
�

identity dyadic [–] Appendix A
I~ first element of the specific intensity column

vector (specific intensity) [W m–2 sr–1] 8.10
bI 14×  blackbody Stokes column vector

[W m–2 sr–1 rad–1 s] 3.13
cI 14×  Stokes column vector of the coherent

electric field [W m–2] 8.4

==============================================================================================
 Symbol Definition and dimension in SI units Introduced

in Section
==============================================================================================
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CPI 14×  circular-polarization column vector
[W m–2] 2.6

MSI 14×  modified Stokes column vector [W m–2] 2.6
I~ 14×  specific intensity column vector

[W m–2 sr–1] 8.10

d
~I 14×  diffuse specific intensity column vector

[W m–2 sr–1] 8.10
 J complex current density [A m–2] 2.3
J 14×  coherency column vector [W m–2] 2.6

 J current density [A m–2] 2.1
cJ 14×  coherency column vector of the coherent

electric field [W m–2] 8.4
d

~J 14×  diffuse coherency column vector
[W m–2 sr–1] 8.9

IR ikkk += (complex) wave number [m–1] 2.5
IR ikkk += (complex) wave vector [m–1] 1.1, 2.5

 k 22×  matrix propagation constant [m–1] 8.3
1k wave number in the exterior region [m–1] 1.8

CPMS  , , LLL 44×  rotation matrices [–] 2.8
IR immm += (complex) refractive index relative to vacuum

or surrounding medium [–] 2.5, 3.1
 M magnetization [A m–1] 2.1

)(rn size distribution function [m–1] 5.3
0n particle number density [m–3] 5.1

)(xO quantity of the order of x
)(xO vector with elements of the order of x 3.4
)(xO matrix with elements of the order of x 3.8
)(xp probability density function [dimension is

that of ]1−x 1.5
P degree of (elliptical) polarization [–] 2.9

 P electric polarization [C m–2] 2.1
QP signed degree of linear polarization [–] 2.9

)(xPl Legendre polynomials [–] Appendix B
)(xPm

l associated Legendre functions [–] Appendix B
)(xPs

mn generalized spherical functions [–] Appendix F
 Q second Stokes parameter [W m–2]  2.6

absQ efficiency factor for absorption [–] 3.9
extQ efficiency factor for extinction [–] 3.9

==============================================================================================
 Symbol Definition and dimension in SI units Introduced

in Section
==============================================================================================
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scaQ efficiency factor for scattering [–] 3.9
Q~ second element of the specific intensity column

vector [W m–2 sr–1] 8.10
effr effective radius of a size distribution [m] 5.3
maxr maximal radius of a size distribution [m] 5.3
minr minimal radius of a size distribution [m] 5.3

 r radius (position) vector [m] 1.1
r̂ unit vector in the direction of the radius vector
     [–] 2.11
 R 44×  reflection matrix [–] 10.3
R 44×  reflection matrix [–] 14.2

 Re real part
3ℜ entire three-dimensional space 1.1
1R 44×  single-scattering reflection matrix [–] 14.2
CR 44×  cyclical reflection matrix [–] 14.2
MR 44×  diffuse multiple-scattering reflection

matrix [–] 14.2
†R 44×  reflection matrix [–] 10.3

ijS elements of the amplitude scattering matrix
[m] 3.3

 S complex Poynting vector [W m–2] 2.4
 S 22×  amplitude scattering matrix [m] 3.3
 S Poynting vector [W m–2] 2.4

t��S time-averaged Poynting vector [W m–2] 2.4
 t time [s] 1.1
T optical thickness of a scattering particulate layer

[–] 12.1
 T 44×  transmission matrix [–] 10.3
T
�

dyadic transition operator [m–5] 3.1
T
�

transformation dyadic [–] 3.10
†T 44×  transmission matrix [–] 10.3

 u θcos−  [–] 10.1
 U third Stokes parameter [W m–2] 2.6
  U electromagnetic energy density [J m–3] 2.4
 U 44×  matrix describing internal radiation

field [–] 10.3
U~ third element of the specific intensity column

vector [W m–2 sr–1] 8.10

==============================================================================================
 Symbol Definition and dimension in SI units Introduced

in Section
==============================================================================================
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t��U  time-averaged electromagnetic energy
density [J m–3] 2.5

†U 44×  matrix describing internal radiation
field [–] 10.3

effv effective variance of a size distribution [–] 5.3
 V fourth Stokes parameter [W m–2] 2.6

EXTV exterior region [m3] 3.1
INTV interior region [m3] 3.1

V~ fourth element of the specific intensity column
vector [W m–2 sr–1] 8.10

 W power [W] 2.4
  x size parameter [–] 3.2

effx effective size parameter of a size distribution
[–] 11.13

 X 44×  matrix propagator [–] 10.2
 Z 44×  Stokes phase matrix [m2] 3.7

ijZ elements of the Stokes phase matrix [m2] 3.7
CP~
pqZ elements of the normalized circular-polarization

phase matrix [–] 11.12
CPZ 44×  circular-polarization phase matrix [m2] 3.7
JZ 44×  coherency phase matrix [m2] 3.7
MSZ 44×  modified Stokes phase matrix [m2] 3.7

Z~ 44×  normalized Stokes phase matrix [–] 11.10
CP~Z 44×  normalized circular-polarization phase

matrix [–] 11.12
ξ��Z 44×  Stokes phase matrix per particle averaged

over particle states [m2] 6.1

 Greek symbols

α phase angle [–] 13.1.1
s
jα expansion coefficients [–] 11.11
β ellipticity angle of the polarization ellipse [rad] 2.7

s
jβ expansion coefficients [–] 11.11

)(δ x Dirac delta function [dimension is that of ]1−x 3.1
)(δ r three-dimensional Dirac delta function [m–3] 3.1
)ˆ(δ n solid-angle Dirac delta function [–] Appendix B

mnδ Kronecker delta [–] Appendix F
Cδ circular backscattering depolarization ratio [–] 11.9

==============================================================================================
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Lδ linear backscattering depolarization ratio [–] 11.9
S∆ area of the sensitive surface of a detector [m2] 3.6
Ω∆ angular aperture of a detector [sr] 3.6

∆ 44×  unit matrix [–] 8.4
23∆ 44×  transformation matrix [–] 3.7
3∆ 44×  transformation matrix [–] 3.7
34∆ 44×  transformation matrix [–] 11.3
CP∆ 44×  transformation matrix [–] 11.12
MS∆ 44×  transformation matrix [–] 3.7

ε complex permittivity [F m–1] 2.3
� complex electric permittivity [F m–1] 2.3
� electric permittivity [F m–1] 2.1

0� electric permittivity of free space [F m–1] 2.1
1� electric permittivity of the surrounding medium

[F m–1] 3.1
ζ orientation angle of the polarization ellipse [rad] 2.7

hpζ helicity-preserving enhancement factor [–] 14.5
hvζ cross-polarized enhancement factor [–] 14.5
ohζ opposite-helicity enhancement factor [–] 14.5
vvζ co-polarized enhancement factor [–] 14.5
Iζ unpolarized enhancement factor [–] 14.5
η� coherent transmission dyadic [–] 8.3
θ polar (zenith) angle [rad] 2.6
θ̂ unit vector in the θ  direction [–] 2.6
Θ scattering angle [rad] 3.9
κ� dyadic propagation constant [m–1] 8.3
Κ 44×  Stokes extinction matrix [m2] 3.8

ijΚ elements of the Stokes extinction matrix [m2] 3.8
eΚ 14×  Stokes emission column vector

[W sr–1 rad–1 s] 3.13
CPΚ 44×  circular-polarization extinction matrix

[m2] 3.8
JΚ 44×  coherency extinction matrix [m2] 3.8
MSΚ 44×  modified Stokes extinction matrix [m2] 3.8
ξ��K 44×  Stokes extinction matrix per particle

averaged over particle states [m2] 6.1
1λ wavelength in the surrounding medium [m] 3.5

µ complex magnetic permeability [H m–1] 2.3 
µ magnetic permeability [H m–1] 2.1 

==============================================================================================
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µ ||u 10.1
0µ magnetic permeability of free space [H m–1] 2.1
Cµ circular polarization ratio [–] 14.5
Lµ linear polarization ratio [–] 14.5
diff
Cµ diffuse circular polarization ratio [–] 14.5
diff
Lµ diffuse linear polarization ratio [–] 14.5
µ̂ couplet },{ ϕµ 10.1
µ̂− couplet },{ ϕµ− 10.1
πµ0ˆ couplet },{ 0 πϕµ + 14.3
π pi [–]
ϖ single-scattering albedo [–] 3.9
ρ complex charge density [C m–3] 2.3
ρ charge density [C m–3] 2.1
ρ� coherency dyad [V2 m–2] 2.12
ρ 22×  coherency (density) matrix [W m–2] 2.6

cρ 22×  coherent coherency matrix [W m–2] 8.8
d

~ρ 22×  diffuse specific coherency matrix
[W m–2 sr–1] 8.8

σ complex conductivity [Ω–1 m–1] 2.3
σ conductivity [Ω–1 m–1] 2.1
Σ
�

specific coherency dyadic [V2 m–2 sr–1] 1.7

1Σ
�

single-scattering specific coherency dyadic
[V2 m–2 sr–1] 14.1

cΣ
�

coherent specific coherency dyadic [V2 m–2 sr–1] 14.1
dΣ
�

diffuse specific coherency dyadic [V2 m–2 sr–1] 8.7

CΣ
�

cyclical specific coherency dyadic [V2 m–2 sr–1] 14.1
LΣ
�

ladder specific coherency dyadic [V2 m–2 sr–1] 8.6

MΣ
�

diffuse multiple-scattering specific coherency
dyadic [V2 m–2 sr–1] 14.1

τ optical depth [–] 12.1
ϕ azimuth angle [rad] 2.6
ϕ̂ unit vector in the ϕ  direction [–] 2.6
χ electric susceptibility [–] 2.1
ψ particle depth [m–2] 10.1
Ψ particle thickness of a scattering particulate

layer [m–2] 10.1
ω angular frequency [rad s–1] 1.1

==============================================================================================
 Symbol Definition and dimension in SI units Introduced

in Section
==============================================================================================



Glossary of symbols 441

 Miscellaneous symbols

ba ⋅ dot (scalar) product of vectors a and b
ba× vector product of vectors a and b
ba⊗ dyadic product of vectors a and b 1.7, Appendix

A
),( ba open interval bxa <<
],[ ba closed interval bxa ≤≤
),[ ba semi-open interval bxa <≤

1−A inverse of matrix A 2.6
TA transpose of matrix A 2.7
TB

�

transpose of dyad(ic) B
�

Appendix A
],[diag ba diagonal matrix with diagonal elements a

and b
Bexp matrix exponential 8.3
B
�

exp dyadic exponential 8.3
n̂ unit vector [–] 1.7
∗x complex-conjugate value of x 2.3
|| x absolute value of x

tx�� average of x over time 1.5
ξ��x average of x over particle states 6.1
R��x average of x over particle coordinates 6.1

0
�

zero dyad 3.1
 0 zero vector 2.2
 0 zero matrix 8.14
∇ gradient [m–1]
∈ element of
∪  union of sets
==============================================================================================

==============================================================================================
 Symbol Definition and dimension in SI units Introduced

in Section
==============================================================================================
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Index

absorption, 1
absorption coefficient, 35
absorption cross section, see cross section,

absorption
adding equations, 247–55, 306–11
adding method, 250–5
aerosol remote sensing, 363
Alexander dark band, 297–8
Ambarzumian equation, 258–9, 313, 379
amplitude scattering matrix, 79

backscattering, 273–4
backscattering theorem for, 82–3
circular-polarization, 287–8
forward-scattering, 179, 270–2
reciprocity relation for, 82
symmetry properties of, 262–4

angle
azimuth, 37
phase, 15, 327, 396
polar, 37
scattering, 237–9, 262, 265
zenith, see angle, polar

angular frequency, 4, 26
anomalous diffraction approximation, see

approximation, anomalous
diffraction

approximation
anomalous diffraction, 234
Born, see approximation, Rayleigh–

Gans
far-field, 6, 74

criteria of, 75–8
first-order-scattering, see first-order-

scattering approximation
geometrical optics, 235–6
Kirchhoff, 236, 353
ray-tracing, see approximation,
   geometrical optics
Rayleigh, 234
Rayleigh–Debye, see approximation,

Rayleigh–Gans
Rayleigh–Gans, 71, 234
scalar, see scalar approximation
single-scattering, see single-scattering

approximation
associated Legendre functions, 409, 424
asymmetry parameter, 105, 275, 354

for spherical particles, 293–5, 301
attenuation coefficient, see extinction

coefficient
averaging

configurational, 125–6
orientation, 126–8

analytical, 126, 233
over particle states, 125
shape, 126–7
size, 126–30

effects of, 291–4
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statistical, 123–30
azimuth angle, see angle, azimuth

backscattering depolarization ratio
circular, 279
linear, 279

backscattering theorem, 82
Bessel functions, spherical, 409
blackbody

energy distribution, 112
Stokes column vector, 113

Born approximation, see approximation,
Rayleigh–Gans

Bouguer–Beer law, 206, 222
boundary conditions, 23–6

absorbing, 229–30
bulk matter, 67–8

optical constants of, 67–8

charge density, 21
surface, 24

circular-polarization column vector, 40
additivity of, 52
rotation transformation rule for, 48

circularly polarized light, see polarization,
circular

cirrus cloud crystals, 352, 354
cloud remote sensing, 354, 363
clusters, 6–7, 233, 346

of spheres, 232
two-sphere, 147–9, 153–6

coherency column vector, 38–9, 61–2
of the coherent field, 180

transfer equation for, 180
coherency dyad of the electric field, 62–4,

105–9
average, 108–10

coherency dyadic, 13, 17, 191–2
at a remote observation point, 368, 371
at an external observation point, 211–2
coherent, 193, 212, 368
cyclical, 365, 368, 370
diffuse multiple-scattering, 368
ladder, 211, 365, 370
ladder approximation for, 192–3
single-scattering, 368

coherency matrix, 38, 61

additivity of, 52
coherency reflection matrix, 372

cyclical, 372
for the exact backscattering

direction, 377
diffuse multiple scattering, 372
single-scattering, 372

coherent backscattering, 14–7, 203, 365–
406

angular profile of, 395–402
benchmark results for, 386
by polydisperse spheres, 386–93
by polydisperse spheroids, 394–5
by solar system bodies, 405–6
half-width at half-maximum of, 397–9
scalar theory of, 396, 399

coherent field, 171–8
at an external point, 210–1
transfer equation for, 180
transversality condition for, 177–8
Twersky expansion of, 173

coherent intensity, 207
physical meaning of, 207

coherent Stokes column vector, see Stokes
column vector, of the coherent field

coherent transmission amplitude matrix,
179

reciprocity relation for, 180
coherent transmission dyadic, 177

reciprocity relation for, 180
coherent transmission Stokes matrix, 181
completely polarized light, see

polarization, full
complex permittivity, 27
computer codes, xiii, 229, 233, 234, 342
conductivity, 21
constitutive relations, 21, 22, 27
continuity equation, 21

integral form of, 23
coordinate system

Cartesian, 37, 126, 411
laboratory, 126, 270–1, 273
particle, 126, 270–1, 273
right-handed, 37
spherical, 37

cosine integral, 189
coupled dipole method, see discrete dipole
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approximation
cross section

absorption, 102–3,
average, 147, 275

differential scattering, 104–5
extinction, 91, 102–4

average, 147, 272
scattering, 102–3, 105

average, 147, 275
for macroscopically isotropic and

mirror-symmetric media,
275

current density, 21
surface, 25

cyclical diagrams, 15, 17, 366–8, 370, 402

delta function, see Dirac delta function
density matrix, see coherency matrix
depolarization, 99, 279, 362, 390
depolarization factor, 325
dichroism, 1, 6, 101, 206
differential equation methods, 227–30
differential volume element, 140, 221–2
diffraction, 296
diffusing wave spectroscopy, 8, 17–9
diffusion approximation, 396
Dirac delta function, 69

solid-angle, 410
three-dimensional, 69

discrete dipole approximation, 231, 233
discrete ordinate method, 260, 323
Doppler effect, 4, 18
doubling method, 251, 253–5
dyad, 407

zero, 70
dyadic, 407–8

Hermitian, 63, 408
identity, see identity dyadic
symmetric, 408
transpose of, 407

dyadic correlation function, 181
ladder approximation for, 191

dyadic exponential, 176
dyadic propagation constant, 177
dyadic transition operator, 71, 78, 117

integral equation for, 71
dynamic light scattering, see scattering,

dynamic

effective radius, 129
effective size parameter, see size

parameter, effective
effective variance, 129
efficiency factor

for absorption, 104, 276
for spherical particles, 301

for extinction, 104, 276
for spherical particles, 291–5, 301

for scattering, 104, 276
for spherical particles, 301

electric displacement, 21
electric energy density, 30
electric field, 2, 21
electric permittivity, 21

frequency-dependent, 27
of free space, 21

electric polarization, 21
electric susceptibility, 21
electromagnetic energy density, 29

time-averaged, 35, 61, 91
electromagnetic scattering, 1
electromagnetic scattering problems,

classification of, 16–8
electromagnetic wave

plane, 1, 31–6
circularly polarized, 45
homogeneous, 33
inhomogeneous, 33
linearly polarized, 45

spherical, 58–62
incoming, 62
outgoing, 59

transverse, 5, 33, 59, 62
circular components of, 287

elementary volume element, see
differential volume element

elliptically polarized light, see polarization,
elliptical

emission Stokes column vector, 112, 114
average, 224, 276–7

emission, thermal, 4, 112, 224
energy conservation, 60, 69–70, 151,

208–9, 404
enhancement factor
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co-polarized, 381–2
general properties of, 383–5

cross-polarized, 382
general properties of, 383–5

helicity-preserving, 382
general properties of, 383–5

opposite-helisity, 382
general properties of, 383–5

scalar, 381
unpolarized, 380

general properties of, 383–5
equilibrium, thermal, 112, 114
ergodic hypothesis, 10, 19, 123
ergodicity, 9–10, 19, 181, 201, 208, 402
Euler angles, 126, 270–1, 273, 411–2,

426–7
extended boundary condition  method, 233

iterative, 233
extinction, 1
extinction coefficient, 206
extinction cross section, see cross section,

extinction
extinction matrix, 6, 99–102

circular-polarization, 102
reciprocity relation for, 102

coherency, 100
average, 198
reciprocity relation for, 102

modified Stokes, 102
reciprocity relation for, 102

Stokes, 100
average, 135, 147, 162, 199
for macroscopically isotropic and

mirror-symmetric media,
272

reciprocity relation for, 101
symmetry property of, 101

far-field approximation, see
approximation, far-field

far-field scattering, see scattering, far-field
far-field zone, 5–6, 13, 73, 119, 122, 222,

229
finite-difference time-domain method, 230,

233
finite-element method, 229–30, 233
first-order-scattering approximation, 158–

62, 216–7
conditions of applicability of, 164

fluorescence, 4
flux density vector, 208–9
FN method, 323
Foldy approximation, 177
Foldy–Lax equations, 6–7, 11, 13, 18,

115–8
far-field version of, 118–22, 165

forward-scattering direction, 89–90, 99
Fredholm integral equation method, 232
Fresnel formulas, 235, 298
fully polarized light, see polarization, full

Gauss theorem, 23
general problem in radiative transfer, 245,

304
generalized spherical functions, 282, 425

completeness of, 425
normalization of, 425
symmetry relations for, 425

geometrical optics approximation, see
approximation, geometrical optics

glory, 297–8, 348, 355
Green’s function

dyadic, free space, 69–70
differential equation for, 69

scalar, 70
differential equation for, 70

halos, 353–4
Henyey–Greenstein phase function, 354–6
hydrometeors, nonspherical and partially

aligned, 279

identity dyadic, 69, 408
incident field, 2, 66, 69, 71
independent scattering, 201
integral equation methods, 227
intensity, 35, 60, 62
interaction principle, 260
interference of light, 14–5

forward-scattering, 146–51
interference structure, 291
interstellar dust grains, 206
interstellar polarization, 206, 279
invariance principles, 260
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invariant imbedding equations, 255–8,
311–3, 327, 378, 379

irradiance, see intensity 

Jacobi polynomials, 422
Jones lemma, 410

Kirchhoff approximation, see
approximation, Kirchhoff

Kronecker delta, 419

ladder approximation, 191–2, 201, 366
ladder diagrams, 13, 17, 191
Lambert law, 327
Lambertian albedo, 327
laser Doppler methods, 19
Legendre functions, associated, see

associated Legendre functions
Legendre polynomials, 409, 413–4, 424
Leibniz rule, 195, 420
levitation, 131

electrostatic, 7
optical, 7

lidar observations, 362
linearly polarized light, see polarization,

linear
Lippmann–Schwinger equation, 71, 84
Lorenz–Mie

coefficients, 291
resonance behavior of, 291

computer code, 229
identities, 279
scattering matrix, 278
theory, 227–9, 278, 291, 353

magnetic energy density, 30
magnetic field, 2, 21
magnetic induction, 21
magnetic permeability, 21

of free space, 21
magnetization, 21
matrix exponential, 179, 181
matrix operator method, 260
matrix propagation constant, 178
maximally crossed diagrams, see cyclical
 diagrams
Maxwell equations, macroscopic, 3, 20

curl, 68
integral form of, 22–3, 27–8
linearity of, 80
plane-wave solution of, 31–6
spherical-wave solution of, 58–62

mean free path, 397
measurement techniques for scattering,

237–9
using microwaves, 238–9
using visible and infrared light, 237–8

medium
absorbing, 34
lossless, 34
nonabsorbing, 34
nondispersive, 34
time-dispersive, 22, 27

meridional plane, 37
method of moments, 231, 233
microwave analog technique, 7, 86, 238–9
modified Stokes column vector, 40

additivity of, 52
rotation transformation rule for, 48

modulator, electro-optic, 237–8
monochromatic light, 1, 26, 33
Monte Carlo method, 323, 396

natural light, see unpolarized light
Newman expansion, see order-of-

scattering series
nonsphericity, effects of, 278–9, 298–301

observable, 5, 109
optical coherence tomography, 19
optical depth, 303
optical equivalence principle, 39–40, 52
optical theorem, 90, 101, 178
optical thickness, 304
order-of-scattering approach, 315
order-of-scattering series, 313, 328
orientation angle of the polarization

ellipse, see polarization ellipse,
orientation of

orientation averaging, see averaging,
orientation

orientation distribution, 127
axially symmetric, 127–8
random, 127
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orientation of the scattering object, see
particle orientation

outgoing wave, 59, 70

parallel beam of light, 1, 33
partially polarized light, see polarization,

partial
particle collection, random and tenuous,

17, 140
particle depth, 242
particle number density, 125
particle orientation, 126
particle thickness, 243
particles

hexagonal, 352–3
independently scattering, see

independent scattering
irregular, 352
random-fractal, 352–3
spherically symmetric, 277–8

phase angle, see angle, phase
phase function, 105, 280, 321

backscattering, 387, 389
expansion in Legendre polynomials,

285
for polydisperse spherical particles,

296–8, 347–8, 354–5
for randomly oriented spheroids, 298
Henyey–Greenstein, see Henyey–

Greenstein phase function
normalization condition for, 280
Rayleigh, 295–6

phase matrix, 6
circular-polarization, 96, 288

average, 289
normalized, 288

Fourier decomposition in
azimuth of, 318–21

symmetry properties of, 290
reciprocity relation for, 98

coherency, 95
average, 198
reciprocity relation for, 98

modified Stokes, 96
reciprocity relation for, 98

normalized Stokes, 280–1
symmetry properties of, 281, 315–6

Stokes, 95–6
average, 135, 147, 162, 199
backscattering, 98
expression in terms of the

scattering matrix, 266–8
for macroscopically isotropic and

mirror-symmetric media,
266–70

inequalities for, 97
reciprocity relation for, 97
symmetry relations for, 269

phase velocity, 31, 34, 59
phenomenological radiative transfer

theory, see radiative transfer
theory, phenomenological

photon, 223–6
photon correlation spectroscopy, 8, 17–9
photon distribution function, 223
photon gas, 223
physical optics approximation, see

approximation, Kirchhoff
plane albedo, 355–6
plane wave, expansion in spherical waves,

409–10
Poincaré recurrence theorem, 19
Poincaré sphere, 64
point matching method, 230

generalized, 230
multiple-expansion, 230, 233

polar angle, see angle, polar
polarization, 99, 357

circular, 43, 45, 99, 390
degree of, 45, 53

complete, see polarization, full
degree of, 52
elliptical, 43, 52, 99

degree of, 52
full, 51–3, 99
left-handed, 42, 53
linear, 43, 45, 99, 390

degree of, 52–3
for spherical particles, 292–3,

298–9
for spheroidal particles, 299
signed, 53–4, 400

of multiply scattered light, 357–9
partial, 51–3, 99, 390
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right-handed, 42, 53
polarization analyzer, 237–8
polarization ellipse, 42–5, 51–3

ellipticity of, 42, 52–3
orientation of, 42, 52–3

polarization modulation technique, 238
polarization opposition effect, 366, 401–2,

405
polarization ratio

linear, 382
diffuse, 382
general properties of, 383–5

circular, 382–3
diffuse, 382–3
general properties of, 383–5

polarizer, 54–8, 237–9
position vector, 2
potential dyadic, 117
potential function, 116
Poynting vector, 28–30

complex, 30
time-averaged, 30, 34–5, 60, 88–9

probability density function, 124
normalization condition for, 124

propagator, 243–5

quadrature division points, see quadrature
formula

quadrature formula, 251, 413–5
Gauss, 413–4
Lobatto, 415
Markov, 415
Radau, 415

quadrature sum, see quadrature formula
quadrature weights, see quadrature

formula
quarter-wave plate, 237–8
quasi-monochromatic light, 4, 49–54, 97,

101, 108, 218, 245, 379, 402

radar observations, 362
of solar system bodies, 406

radiance, see specific intensity
radiation condition, 231
radiative transfer

in particulate surfaces, 363–4
in plane-parallel media, 240–60,

302–64
in plane-parallel, macroscopically

isotropic and mirror-symmetric
 media, 302–64

in Rayleigh-scattering slabs, 324–37,
363

radiative transfer equation, 13, 165, 199,
365

for macroscopically isotropic and
mirror-symmetric media, 302

scalar, 321
Fourier decomposition of, 321–2

vector, 199
Fourier decomposition of, 318–9

radiative transfer theory, 14, 16–7
phenomenological, 218–25

radius, 127
effective, see effective radius
equivalent-sphere, 127

radius vector, see position vector
rainbows, 297–8, 348
ray-tracing approximation, see

approximation, geometrical optics
Rayleigh approximation, see

approximation, Rayleigh
Rayleigh–Debye approximation, see

approximation, Rayleigh–Gans
Rayleigh–Gans approximation, see

approximation, Rayleigh–Gans
Rayleigh hypothesis, 230, 233
Rayleigh scattering, 294–6, 325, 386, 396
reciprocity, 15, 80–4
reference plane, 47

rotations of, 47
reflection coefficient, 326
reflection matrix, 246, 305, 372

cyclical, 372
for the exact backscattering

direction, 377–8
diffuse multiple-scattering, 372
reciprocity relations for, 259
single-scattering, 372
symmetry properties of, 316–7

refractive index, 3, 34
relative, 68

relativity theory, 64
retarder, 56–8
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ripple, high-frequency, 291
rotation matrix

for circular-polarization representation,
48

for modified Stokes column vector, 48
Stokes, 48

scalar approximation, 321, 324, 381
accuracy of, 324–5, 363, 381

for Rayleigh-scattering slabs,
325–37

for polydisperse spheres, 337–42
for polydisperse spheroids,

342–7
scale invariance rule, 84–7, 97, 101, 104,

238
scattered field, 2, 66, 69–71
scattering

Brillouin, 4
by a fixed finite object, 1–5
by random particles, 10–2, 131–9
by variable objects, 110–1
dynamic, 9, 17
elastic, 1
electromagnetic, see electromagnetic

scattering
far-field, 5, 11, 71–8, 131–6
forward, 270–3
independent, see independent

scattering
inelastic, 18
multiple, 12–4
Raman, 4
single, 10–2
static, 9, 17

scattering angle, see angle, scattering
scattering cross section, see cross section,

scattering
scattering dyadic, 78

average, 173
forward-scattering, 178
reciprocity relation for, 82

scattering matrix, circular-polarization,
normalized, 288–9

expansion in generalized spherical
functions, 289–90

symmetry properties of, 289

scattering matrix, Stokes, 261–2
average, 264
effects of nonsphericity on, 278–9
for backward scattering, 273–5
for forward scattering, 272–3
for macroscopically isotropic and

mirror-symmetric media, 266
for rotationally symmetric particles,

272–3
for spherically symmetric particles, 278
inequalities for, 266, 275
normalized, 280

expansion in generalized spherical
functions, 282

expansion in Wigner d-functions,
282–6

for polydisperse spheres, 285, 287,
298–300, 347–8

for randomly oriented spheroids,
298–300

for rotationally symmetric particles,
281

for spherically symmetric particles,
281

properties of, 280–1
symmetries of, 264–5

scattering medium
macroscopically isotropic, 265
macroscopically isotropic and

mirror-symmetric, 261, 266
macroscopically mirror-symmetric,

265–6
scattering plane, 261–3
scattering tensor, 80

reciprocity condition for, 81
secondary waves, 2
separation of variables method for

spheroids, 229, 233
shape averaging, see averaging, shape
sine integral, 189
single-scattering albedo, 103–4

average, 276
for spherical particles, 293–5, 301,

387–8
single-scattering approximation, 11, 12,

141–57
far-field, 142–5
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modified uncorrelated, 145–7, 222
conditions of validity of, 151–

7, 163
uncorrelated, 145–7

effects of forward-scattering
interference on, 147–50

size averaging, see averaging, size
size distribution, 127–30

gamma, 128–30, 294, 338, 348, 354,
387–9

log normal, 128–30
modified bimodal log normal, 128–9
modified gamma, 128–9
modified power law, 128, 130
power law, 128

size parameter, 86
effective, 293, 338

Snell law, 235
snow crystals, 352, 354
solid angle element, differential, 61
specific coherency column vector, 371

cyclical, 372
diffuse, 198

integral equation for, 198
integro-differential equation for,

198
multiple-scattering, 371

single-scattering, 371
specific coherency dyadic, 13, 366–71

at an external observation point, 211–3,
368

coherent, 368–9, 371
cyclical, 370–1

for the exact backscattering
direction, 373

diffuse, 195, 369
integral equation for, 195
integro-differential equation for,

196–7
multiple-scattering, 368–9, 371

ladder, 13, 194–5
integral equation for, 194

single-scattering, 368–9
specific coherency matrix

diffuse, 197
integral equation for, 197
integro-differential equation for,

197
specific intensity, diffuse, 207

physical meaning of, 207
specific intensity column vector, 13

at an external observation point, 213–4
diffuse, 199

integral equation for, 199
integro-differential equation for,

199
full, 200

integral equation for, 200
integro-differential equation for,

200
physical meaning of, 203–8

speckle pattern, 8, 403
speed of light

in a nonabsorbing medium, 35, 61
in a vacuum, 34

spherical albedo, 349–52, 357
spherical harmonics, scalar, 409

completeness relation for, 410
spherical harmonics solution, 323
spherical wave functions, vector, 228, 230,

232, 233
standard problem in radiative transfer,

240–3, 247, 302–6
static light scattering, see scattering, static
stationary phase method, 188, 416–7
Stokes column vector, 5, 39, 61–2

emission, see emission Stokes column
vector

modified, see modified Stokes column
vector

of the coherent field, 180, 199
at an external observation point,

211
physical meaning of, 203–8
transfer equation for, 180, 199

Stokes identity, 40
Stokes parameters, 5, 39

ellipsometric interpretation of, 41–5
for quasi-monochromatic light, 49

additivity of, 52
quadratic inequality for, 50–1

measurement of, 54–8
rotation transformation rule for, 48

Stokes theorem, 22



Index478

strong localization of light, 405
successive orders of scattering method,

313–5
superposition method, 232–3
superposition principle, 28, 71
Système International, 20, 429–30

T matrix, 232–3
for a cluster, 233

T-matrix computer codes, 233
T-matrix method, 126, 232–3, 284

superposition, 18, 147, 233, 284
temperature, absolute, 4, 112, 224
thermal emission, see emission, thermal
thermal equilibrium, see equilibrium,

thermal
time, 2, 21
time-harmonic factor, 5, 36, 171
time-harmonic field, 3, 26
total field, 2, 7, 66, 71, 118
transformation dyadic, 108–11

of a multi-particle group, 217
transition matrix, see T matrix
translation addition theorem, 232–3
transmission matrix, 246, 305

reciprocity relation for, 259
symmetry properties of, 316–7

transport mean free path, 398, 404
Twersky approximation, 13, 169–71, 201,

402–3

unpolarized light, 51–3, 99, 321, 326, 348,
357, 380

vector spherical wave functions, see
spherical wave functions, vector

Venus clouds, 348, 359–62
volume integral equation, 70–1
volume integral equation method, 231

wave equation, vector, 68
wave number, 34, 59
wave vector, 4, 31
wavelength

free-space, 35
in a nonabsorbing medium, 36, 86

weak localization of electromagnetic
waves, 14

Wigner d-functions, 282–4, 418–22
addition theorem for, 426–7
completeness of, 422
orthogonality of, 422
recurrence relations for, 423–4
symmetry properties of, 419
unitarity condition for, 427

Wigner D-functions, 426
addition theorem for, 426
unitarity condition for, 426

zenith angle, see angle, polar
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Plate 11.13.1.  Color images of the ratio 11 ab−  versus effective size parameter eff1rk  and
scattering angle ,Θ  for the gamma distribution of spherical particles with 0eff =v  (the value
for monodisperse particles), 0.01, 0.07, and 0.2. The relative refractive index is fixed at 1.44.
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Plate 13.1.1.  (a) Contour plot of ),,( 0u µµα T  (in degrees) superimposed on the color diagram
of local underestimation ),,( 0u µµε T  (in percent) for ,1=T ,031.0=δ ,1=ϖ  and

.0L =A    (b) Contour plot of ),,( 0o µµα T  (in degrees) superimposed on the color diagram of
local overestimation ),,( 0o µµε T  (in percent) for ,1=T ,031.0=δ ,1=ϖ  and .0L =A
Note that below and to the left of the contour labeled by 90, ),,( 0o µµα T  is a continuous
function of µ  and ,0µ  is always greater than ,90°  and has a maximum at around

.64.00 == µµ   (c) Contour plot of ),,( 0o µµϕ T  (in degrees) superimposed on the color
diagram of local overestimation ),,( 0o µµε T  (in percent) for ,1=T ,031.0=δ ,1=ϖ  and

.0L =A  Note that ),,( 0o µµϕ T  is zero above and to the right of the contour labeled by 0.
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Plate 13.1.2.  Scalar approximation specific intensity errors for Rayleigh-scattering slabs with
031.0=δ  and .0L =A  The split-hemisphere polar diagrams display the errors for reflection in

the left-hand hemispheres and for diffuse transmission in the right-hand hemispheres. The
errors are defined by Eq. (13.1.4) for reflection and by a similar formula for diffuse
transmission. The left-hand and right-hand columns shows results for 2.0=T  and ,8.0=T
respectively. Illumination polar angles are for ,9.00 =µ 0.5, and 0.1, respectively, as indicated
by the yellow stars. The azimuth angle of the unpolarized incident beam is zero. (After Lacis et
al., 1998.)
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Plate 13.2.1.  Reflected specific intensity (in )srmW 12 −−  versus µ  and ϕ  for semi-infinite
slabs composed of model 1, 2, and 3 ice particles. The four values of minus the cosine of the
illumination zenith angle ,9.00 =µ 0.7, 0.4, and 0.1 are indicated by the yellow stars. The
azimuth angle of the unpolarized incident beam is zero and its intensity is .Wm 2
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Plate 13.2.2.  As in Plate 13.2.1, but for ratios of the reflected specific intensities.
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Plate 13.2.3.  Left-hand column: reflected specific intensity (in )srmW 12 −−  versus µ  and ϕ
for a semi-infinite slab composed of model 1 spherical particles. The four values of minus the
cosine of the illumination zenith angle ,9.00 =µ 0.7, 0.4, and 0.1 are indicated by the yellow
stars in the right-hand column. The azimuth angle of the unpolarized incident beam is zero and
its intensity is .Wm 2

0
−= πI  Central column: as in the left-hand column, but for the

asymmetry-parameter-equivalent HG phase function. Right-hand column: the ratio of the
specific intensities shown in the central and left-hand columns.
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Plate 14.6.1.  Unpolarized backscattering enhancement factor Iζ  versus effective size
parameter effx  and 0µ  for a homogeneous semi-infinite slab composed of polydisperse
spherical particles with =Rm 1.2, 1.4, 1.6, 1.8, and 2 and =Im 0, 0.002, 0.01, and 0.3.
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Plate 14.6.2.  Co-polarized backscattering enhancement factor vvζ  versus effective size
parameter effx  and 0µ  for a homogeneous semi-infinite slab composed of polydisperse
spherical particles with =Rm 1.2, 1.4, 1.6, 1.8, and 2 and =Im 0, 0.002, 0.01, and 0.3.
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Plate 14.6.3.  Cross-polarized backscattering enhancement factor hvζ  versus effective size
parameter effx  and 0µ  for a homogeneous semi-infinite slab composed of polydisperse
spherical particles with =Rm 1.2, 1.4, 1.6, 1.8, and 2 and =Im 0, 0.002, 0.01, and 0.3.
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Plate 14.6.4.  Opposite-helicity backscattering enhancement factor ohζ  versus effective size
parameter effx  and 0µ  for a homogeneous semi-infinite slab composed of polydisperse
spherical particles with =Rm 1.2, 1.4, 1.6, 1.8, and 2 and =Im 0, 0.002, 0.01, and 0.3.
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Plate 14.6.5.  Linear polarization ratio Lµ  versus effective size parameter effx  and 0µ  for a
homogeneous semi-infinite slab composed of polydisperse spherical particles with =Rm 1.2,
1.4, 1.6, 1.8, and 2 and =Im 0, 0.002, 0.01, and 0.3.
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Plate 14.6.6.  Diffuse linear polarization ratio diff
Lµ  versus effective size parameter effx  and

0µ  for a homogeneous semi-infinite slab composed of polydisperse spherical particles with
=Rm 1.2, 1.4, 1.6, 1.8, and 2 and =Im 0, 0.002, 0.01, and 0.3.
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Plate 14.6.7.  Circular polarization ratio Cµ  versus effective size parameter effx  and 0µ  for a
homogeneous semi-infinite slab composed of polydisperse spherical particles with =Rm 1.2,
1.4, 1.6, 1.8, and 2 and =Im 0, 0.002, 0.01, and 0.3.
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Plate 14.6.8.  Diffuse circular polarization ratio diff
Cµ  versus effective size parameter effx  and

0µ  for a homogeneous semi-infinite slab composed of polydisperse spherical particles with
=Rm 1.2, 1.4, 1.6, 1.8, and 2 and =Im 0, 0.002, 0.01, and 0.3.




